Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    REVIEW

    A Comprehensive Review of Multimodal Deep Learning for Enhanced Medical Diagnostics

    Aya M. Al-Zoghby1,2, Ahmed Ismail Ebada1,*, Aya S. Saleh1, Mohammed Abdelhay3, Wael A. Awad1

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4155-4193, 2025, DOI:10.32604/cmc.2025.065571 - 30 July 2025

    Abstract Multimodal deep learning has emerged as a key paradigm in contemporary medical diagnostics, advancing precision medicine by enabling integration and learning from diverse data sources. The exponential growth of high-dimensional healthcare data, encompassing genomic, transcriptomic, and other omics profiles, as well as radiological imaging and histopathological slides, makes this approach increasingly important because, when examined separately, these data sources only offer a fragmented picture of intricate disease processes. Multimodal deep learning leverages the complementary properties of multiple data modalities to enable more accurate prognostic modeling, more robust disease characterization, and improved treatment decision-making. This review… More >

  • Open Access

    ARTICLE

    MDD: A Unified Multimodal Deep Learning Approach for Depression Diagnosis Based on Text and Audio Speech

    Farah Mohammad1,2,*, Khulood Mohammed Al Mansoor3

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4125-4147, 2024, DOI:10.32604/cmc.2024.056666 - 19 December 2024

    Abstract Depression is a prevalent mental health issue affecting individuals of all age groups globally. Similar to other mental health disorders, diagnosing depression presents significant challenges for medical practitioners and clinical experts, primarily due to societal stigma and a lack of awareness and acceptance. Although medical interventions such as therapies, medications, and brain stimulation therapy provide hope for treatment, there is still a gap in the efficient detection of depression. Traditional methods, like in-person therapies, are both time-consuming and labor-intensive, emphasizing the necessity for technological assistance, especially through Artificial Intelligence. Alternative to this, in most cases… More >

  • Open Access

    ARTICLE

    Image Captioning Using Multimodal Deep Learning Approach

    Rihem Farkh1,*, Ghislain Oudinet1, Yasser Foued2

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3951-3968, 2024, DOI:10.32604/cmc.2024.053245 - 19 December 2024

    Abstract The process of generating descriptive captions for images has witnessed significant advancements in last years, owing to the progress in deep learning techniques. Despite significant advancements, the task of thoroughly grasping image content and producing coherent, contextually relevant captions continues to pose a substantial challenge. In this paper, we introduce a novel multimodal method for image captioning by integrating three powerful deep learning architectures: YOLOv8 (You Only Look Once) for robust object detection, EfficientNetB7 for efficient feature extraction, and Transformers for effective sequence modeling. Our proposed model combines the strengths of YOLOv8 in detecting objects,… More >

  • Open Access

    ARTICLE

    Enhancing Cross-Lingual Image Description: A Multimodal Approach for Semantic Relevance and Stylistic Alignment

    Emran Al-Buraihy, Dan Wang*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3913-3938, 2024, DOI:10.32604/cmc.2024.048104 - 20 June 2024

    Abstract Cross-lingual image description, the task of generating image captions in a target language from images and descriptions in a source language, is addressed in this study through a novel approach that combines neural network models and semantic matching techniques. Experiments conducted on the Flickr8k and AraImg2k benchmark datasets, featuring images and descriptions in English and Arabic, showcase remarkable performance improvements over state-of-the-art methods. Our model, equipped with the Image & Cross-Language Semantic Matching module and the Target Language Domain Evaluation module, significantly enhances the semantic relevance of generated image descriptions. For English-to-Arabic and Arabic-to-English cross-language… More >

  • Open Access

    ARTICLE

    Predictive Multimodal Deep Learning-Based Sustainable Renewable and Non-Renewable Energy Utilization

    Abdelwahed Motwakel1,*, Marwa Obayya2, Nadhem Nemri3, Khaled Tarmissi4, Heba Mohsen5, Mohammed Rizwanulla6, Ishfaq Yaseen6, Abu Sarwar Zamani6

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1267-1281, 2023, DOI:10.32604/csse.2023.037735 - 26 May 2023

    Abstract Recently, renewable energy (RE) has become popular due to its benefits, such as being inexpensive, low-carbon, ecologically friendly, steady, and reliable. The RE sources are gradually combined with non-renewable energy (NRE) sources into electric grids to satisfy energy demands. Since energy utilization is highly related to national energy policy, energy prediction using artificial intelligence (AI) and deep learning (DL) based models can be employed for energy prediction on RE and NRE power resources. Predicting energy consumption of RE and NRE sources using effective models becomes necessary. With this motivation, this study presents a new multimodal… More >

  • Open Access

    ARTICLE

    Early Detection of Alzheimer’s Disease Using Graph Signal Processing and Deep Learning

    Himanshu Padole*, S. D. Joshi, Tapan K. Gandhi

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1655-1669, 2022, DOI:10.32604/iasc.2022.021310 - 09 October 2021

    Abstract Many methods have been proposed in the literature for diagnosis of Alzheimer's disease (AD) in the early stages, among which the graph-based methods have been more popular, because of their capability to utilize the relational information among different brain regions. Here, we design a novel graph signal processing based integrated AD detection model using multimodal deep learning that simultaneously utilizes both the static and the dynamic brain connectivity based features extracted from resting-state fMRI (rs-fMRI) data to detect AD in the early stages. First, our earlier proposed state-space model (SSM) based graph connectivity dynamics characterization More >

  • Open Access

    ARTICLE

    COVID-DeepNet: Hybrid Multimodal Deep Learning System for Improving COVID-19 Pneumonia Detection in Chest X-ray Images

    A. S. Al-Waisy1, Mazin Abed Mohammed1, Shumoos Al-Fahdawi1, M. S. Maashi2, Begonya Garcia-Zapirain3, Karrar Hameed Abdulkareem4, S. A. Mostafa5, Nallapaneni Manoj Kumar6, Dac-Nhuong Le7,8,*

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 2409-2429, 2021, DOI:10.32604/cmc.2021.012955 - 05 February 2021

    Abstract Coronavirus (COVID-19) epidemic outbreak has devastating effects on daily lives and healthcare systems worldwide. This newly recognized virus is highly transmissible, and no clinically approved vaccine or antiviral medicine is currently available. Early diagnosis of infected patients through effective screening is needed to control the rapid spread of this virus. Chest radiography imaging is an effective diagnosis tool for COVID-19 virus and follow-up. Here, a novel hybrid multimodal deep learning system for identifying COVID-19 virus in chest X-ray (CX-R) images is developed and termed as the COVID-DeepNet system to aid expert radiologists in rapid and… More >

Displaying 1-10 on page 1 of 7. Per Page