Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (107)
  • Open Access

    ARTICLE

    Trans-scale Granular Modelling of Cytoskeleton: a Mini-Review

    Tong Li, Prasad KDV Yarlagadda, Adekunle Oloyede, Namal Thibbotuwawa, YuanTong Gu∗,†

    Molecular & Cellular Biomechanics, Vol.12, No.1, pp. 17-35, 2015, DOI:10.3970/mcb.2015.012.017

    Abstract Living cells are the functional unit of organs that controls reactions to their exterior. However, the mechanics of living cells can be difficult to characterize due to the crypticity of their microscale structures and associated dynamic cellular processes. Fortunately, multiscale modelling provides a powerful simulation tool that can be used to study the mechanical properties of these soft hierarchical, biological systems. This paper reviews recent developments in hierarchical multiscale modeling technique that aimed at understanding cytoskeleton mechanics. Discussions are expanded with respects to cytoskeletal components including: intermediate filaments, microtubules and microfilament networks. The mechanical performance of difference cytoskeleton components are… More >

  • Open Access

    ARTICLE

    Coarse-grained Modeling and Simulation of Actin Filament Behavior Based on Brownian Dynamics Method

    Yoshitaka Shimada∗,†, Taiji Adachi∗,†,‡, Yasuhiro Inoue∗,†, Masaki Hojo

    Molecular & Cellular Biomechanics, Vol.6, No.3, pp. 161-174, 2009, DOI:10.3970/mcb.2009.006.161

    Abstract The actin filament, which is the most abundant component of the cytoskeleton, plays important roles in fundamental cellular activities such as shape determination, cell motility, and mechanosensing. In each activity, the actin filament dynamically changes its structure by polymerization, depolymerization, and severing. These phenomena occur on the scales ranging from the dynamics of actin molecules to filament structural changes with its deformation due to the various forces, for example, by the membrane and solvent. To better understand the actin filament dynamics, it is important to focus on these scales and develop its mathematical model. Thus, the objectives of this study… More >

  • Open Access

    ARTICLE

    A Loose Coupling Multiscale Approach for the Detailed Analysis of the Influence of Critical Areas on the Global Behaviour of Composite Structures

    D. Chrupalla1, J. Kreikemeier1, S. Berg2, L. Kärger3, M. Doreille4, T. Ludwig4, E. Jansen2, R. Rolfes2, A.Kling1

    CMC-Computers, Materials & Continua, Vol.32, No.3, pp. 159-176, 2012, DOI:10.3970/cmc.2012.032.159

    Abstract In this paper, a loose coupling multiscale modeling technique for the detailed numerical analysis of critical areas in composite structures is presented. It is used to describe the global (macroscopic) behaviour of composite structures taking into account the effects of local phenomena. This is done by indirectly connecting the global and local FE-models. Prescribed displacements are assigned to the local boundaries in the transition from the global to local modeling level. The local-to-global transition is realized by assigning averaged local stresses to the respective global Gauss points and by updating the global tangent stiffness operator. To illustrate the feasibility of… More >

  • Open Access

    ARTICLE

    A Multiscale Method for Damage Analysis of Quasi-Brittle Heterogeneous Materials

    Filip Putar1, Jurica Sorić1,*, Tomislav Lesičar1, Zdenko Tonković1

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.1, pp. 123-156, 2019, DOI:10.32604/cmes.2019.06562

    Abstract A novel multiscale algorithm based on the higher-order continuum at both micro- and macrostructural level is proposed for the consideration of the quasi-brittle damage response of heterogeneous materials. Herein, the microlevel damage is modelled by the degradation of the homogenized stress and tangent stiffness tensors, which are then upscaled to govern the localization at the macrolevel. The C1 continuity finite element employing a modified case of Mindlin’s form II strain energy density is derived for the softening analysis. To the authors’ knowledge, the finite element discretization based on the strain gradient theory is applied for the modeling of damage evolution… More >

  • Open Access

    ARTICLE

    Hemodynamics of Enhanced External Counterpulsation with Different Coronary Stenosis

    Sihan Chen1, Bao Li1, Haisheng Yang1, Jianhang Du2, Xiaoling Li2, Youjun Liu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.2, pp. 149-162, 2018, DOI: 10.31614/cmes.2018.04133

    Abstract Enhanced external counterpulsation (EECP) is able to treat myocardial ischemia, which is usually caused by coronary artery stenosis. However, the underlying mechanisms regarding why this technique is effective in treating myocardial ischemia remains unclear and there is no patient-specific counterpulsation mode for different rates of coronary artery stenosis in clinic. This study sought to investigate the hemodynamic effect of varied coronary artery stenosis rates when using EECP and the necessity of adopting targeted counterpulsation mode to consider different rates of coronary artery stenosis. Three 3-dimensional (3D) coronary models with different stenosis rates, including 55% (Model 1), 65% (Model 2), and… More >

  • Open Access

    ARTICLE

    The Numerical Accuracy Analysis of Asymptotic Homogenization Method and Multiscale Finite Element Method for Periodic Composite Materials

    Hao Dong1, Yufeng Nie1,2, Zihao Yang1, Yang Zhang1, Yatao Wu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.111, No.5, pp. 395-419, 2016, DOI:10.3970/cmes.2016.111.395

    Abstract In this paper, we discuss the numerical accuracy of asymptotic homogenization method (AHM) and multiscale finite element method (MsFEM) for periodic composite materials. Through numerical calculation of the model problems for four kinds of typical periodic composite materials, the main factors to determine the accuracy of first-order AHM and second-order AHM are found, and the physical interpretation of these factors is given. Furthermore, the way to recover multiscale solutions of first-order AHM and MsFEM is theoretically analyzed, and it is found that first-order AHM and MsFEM provide similar multiscale solutions under some assumptions. Finally, numerical experiments verify that MsFEM is… More >

  • Open Access

    ARTICLE

    A Multiscale Method Based on the Fibre Configuration Field, IRBF and DAVSS for the Simulation of Fibre Suspension Flows

    H.Q. Nguyen1, C.-D. Tran1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.4, pp. 361-403, 2015, DOI:10.3970/cmes.2015.109.361

    Abstract In this paper, an Integrated Radial Basis Function (IRBF)-based multiscale method is used to simulate the rheological properties of dilute fibre suspensions. For the approach, a fusion of the IRBF computation scheme, the Discrete Adaptive Viscoelastic Stress Splitting (DAVSS) technique and the Fibre Configuration Field has been developed to investigate the evolution of the flow and the fibre configurations through two separate computational processes. Indeed, the flow conservation equations, which are expressed in vorticity-stream function formulation, are solved using IRBF-based numerical schemes while the evolution of fibre configuration fields governed by the Jeffery’s equation is captured using the principle of… More >

  • Open Access

    ARTICLE

    Estimation of Isotropic Hyperelasticity Constitutive Models to Approximate the Atomistic Simulation Data for Aluminium and Tungsten Monocrystals

    Marcin Maździarz1, Marcin Gajewski2

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.2, pp. 123-150, 2015, DOI:10.3970/cmes.2015.105.123

    Abstract In this paper, the choice and parametrisation of finite deformation polyconvex isotropic hyperelastic models to describe the behaviour of a class of defect-free monocrystalline metal materials at the molecular level is examined. The article discusses some physical, mathematical and numerical demands which in our opinion should be fulfilled by elasticity models to be useful. A set of molecular numerical tests for aluminium and tungsten providing data for the fitting of a hyperelastic model was performed, and an algorithm for parametrisation is discussed. The proposed models with optimised parameters are superior to those used in non-linear mechanics of crystals. More >

  • Open Access

    ARTICLE

    Comparison of Four Multiscale Methods for Elliptic Problems

    Y. T. Wu1, Y. F. Nie2, Z. H. Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.4, pp. 297-325, 2014, DOI:10.3970/cmes.2014.099.297

    Abstract Four representative multiscale methods, namely asymptotic homogenization method (AHM), heterogeneous multiscale method (HMM), variational multiscale (VMS) method and multiscale finite element method (MsFEM), for elliptic problems with multiscale coefficients are surveyed. According to the features they possess, these methods are divided into two categories. AHM and HMM belong to the up–down framework. The feature of the framework is that the macroscopic solution is solved first with the help of effective information computed in local domains, and then the multiscale solution is resolved in local domains using the macroscopic solution when necessary. VMS method andMsFEM fall in the uncoupling framework. The… More >

  • Open Access

    ARTICLE

    Activation Pattern of Nuclear Factor-kB in Skin after Mechanical Stretch – a Multiscale Modeling Approach

    V.B.Shim 1, K. Mithraratne 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.3, pp. 279-294, 2014, DOI:10.32604/cmes.2014.098.279

    Abstract The activation of NF-kB is an important precursor in developing melanoma. However the role of mechanical stimulation in the NF-kB activation has not been studied. We used a multiscale computational modeling approach to investigate the role of mechanical stimulation and the skin tissue internal structures in the activation of NF-kB. Our model is made up of three levels – 1) the macro level where a FE model of the Zygomaticus major muscle was developed; 2) the meso level where a micro FE model of the skin block using a sample from human cadaver was developed; 3) the cell level where… More >

Displaying 61-70 on page 7 of 107. Per Page