Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (991)
  • Open Access

    PROCEEDINGS

    Ultrafast Spin Dynamics in Magnetic-Atom-Doped Triangulene Nanoflakes

    Shuai Xu1, Congfei Zang1, Yiming Zhang2, Chun Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-2, 2025, DOI:10.32604/icces.2025.011525

    Abstract The development of novel spintronic devices based on spin manipulation in magnetic nanostructures is crucial for achieving higher speed and miniaturization in future computing technologies. As a unique type of graphene quantum dot, triangulene nanoflakes (TNFs) exhibit nontrivial magnetic properties and excellent extensibility, making them highly promising for the design and application of spin logic units. In this study, we employ first-principles calculations to investigate experimentally synthesizable TNFs, in which transition metal (TM) atoms —namely Fe, Co, Ni, and Cu— are individually introduced at π-conjugated doping sites. The effects of different dopants and doping positions… More >

  • Open Access

    ARTICLE

    Bismuth Silver Sulfide (AgBiS2) Nanoparticle-Modified SPEs Enabling Concurrent Lead and Cadmium Analysis

    Wenwen Zhang*, Changgui Lei

    Chalcogenide Letters, Vol.22, No.12, pp. 1031-1045, 2025, DOI:10.15251/CL.2025.2212.1031 - 08 December 2025

    Abstract The development of quick, accurate, and field-deployable detection techniques is required due to the growing environmental pollution caused by heavy metals, especially lead (Pb) and cadmium (Cd). In this work, bismuth silver sulfide (AgBiS2) nanoparticles are synthesized using a simple hydrothermal method aided by biomolecules, and they are used as a new modifier forPb(II) and Cd(II) simultaneous electrochemical detection using screen-printed electrodes (SPEs). After thorough material characterisation, pure, highly crystalline, quasi-spherical AgBiS2 nanoparticles produced with an average diameter of around 20 nm. The AgBiS2/SPE sensor demonstrated a threefold decrease in charge transfer resistance, indicating a considerable improvement More >

  • Open Access

    ARTICLE

    Laser-Ablated CdS and Ag2O Nanomaterials for High-Sensitivity Photodetectors

    Hameed H. Ahmed1, Thaer A. Mezher2,*, Marwan R. Rashid3

    Chalcogenide Letters, Vol.22, No.12, pp. 1055-1066, 2025, DOI:10.15251/CL.2025.2212.1055 - 10 December 2025

    Abstract Laser ablation in liquids (LAL), a hygienic and effective method for creating high-purity nanomaterials, was used in this study to create cadmium sulfide (CdS) and silver oxide (Ag2O) nanoparticles. The sputtering process was used to deposit the produced nanomaterials on porous silicon (PSi) substrates, and a number of assays were used to examine the samples’ structural, optical, and electrical characteristics. The CdS sample had a hexagonal crystal structure, according to X-ray diffraction (XRD) data, whereas the AgO sample had a cubic structure. The diameters of the nanoparticles in the two samples ranged from 22.64 nm for… More >

  • Open Access

    ARTICLE

    Structural and Electrochemical Properties of Flower-Like SnS2 Architectures as Cathodic Material for Lithium-Sulfur Batteries

    N. Masood1, A. M. Toufiq2,*, S. Magam3,4, S. M. W. Ali2, M. T. Qureshi3,*

    Chalcogenide Letters, Vol.22, No.12, pp. 1047-1053, 2025, DOI:10.15251/CL.2025.2212.1047 - 08 December 2025

    Abstract Self-assembled highly hierarchical novel SnS2 microflowers having acute edge nanopetals have been fabricated using a facile template-free hydrothermal growth technique utilizing Tin (II) chloride dihydrate (SnCl2·2H2O) and Sodium sulfide nonahydrate (Na2S·9H2O) as reaction reagents. Morphological analysis exhibits the flower-type SnS2 microarchitectures ranging from 4 to 7 μm. The vibrational mode measured at A1g = 314 cm−1 confirms the existence of hexagonal phase SnS2 using Raman spectroscopy. The electrochemical results suggest the promise of as-synthesized SnS2 structures as a cathodic material in lithium-sulfur batteries. More >

  • Open Access

    ARTICLE

    Chitosan-Selenate Complex Improves Bioactive Profile and Antioxidant Response in Wheat Sprouts (Triticum aestivum L.)

    Jazmín Montserrat Gaucin-Delgado1, Cristian Oswaldo Solis-López2, Pablo Preciado-Rangel3, Bernardo Espinosa-Palomeque4, Francisco Gerardo Veliz-Deras2, Viridiana Contreras-Villarreal2, Ricardo Israel Ramírez-Gottfried5,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.12, pp. 3961-3973, 2025, DOI:10.32604/phyton.2025.072536 - 29 December 2025

    Abstract Selenium (Se) deficiency is a global health problem affecting more than 500 million people; crop biofortification is a sustainable strategy for its mitigation. This study investigated the effect of the application of selenate nanoparticles (SeO42−) and the combination of selenate (SeO42−) and chitosan (CS) (forming a SeO42−-CS complex) on the antioxidant profile, growth, biomass, bioactive compounds, enzymes, and Se accumulation of wheat (Triticum spp.) sprouts. Fourteen treatments were applied using a factorial design combining seven concentrations and two formulations: SeO42− and SeO42−-CS. It was identified that chitosan increased Se uptake efficiency by 30% versus conventional selenate. The optimal… More >

  • Open Access

    ARTICLE

    Surface Wettability and Boiling Heat Transfer Enhancement in Microchannels Using Graphene Nanoplatelet and Multi-Walled Carbon Nanotube Coatings

    Ghinwa Al Mimar1, Natrah Kamaruzaman1,*, Kamil Talib Alkhateeb2

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1933-1956, 2025, DOI:10.32604/fhmt.2025.070118 - 31 December 2025

    Abstract The pivotal role microchannels play in the thermal management of electronic components has, in recent decades, prompted extensive research into methods for enhancing their heat transfer performance. Among these methods, surface wettability modification was found to be highly effective owing to its significant influence on boiling dynamics and heat transfer mechanisms. In this study, we modified surface wettability using a nanocomposite coating composed of graphene nano plate (GNPs) and multi-walled carbon nanotubes (MWCNT) and then examined how the modification affected the transfer of boiling heat in microchannels. The resultant heat transfer coefficients for hydrophilic and… More >

  • Open Access

    ARTICLE

    Performance Evaluation of Hierarchically Structured Superhydrophobic PVDF Membranes for Heavy Metals Removal via Membrane Distillation

    Pooja Yadav1,*, Ramin Farnood2, Vivek Kumar1,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1181-1197, 2025, DOI:10.32604/jpm.2025.072564 - 26 December 2025

    Abstract Heavy metal contamination in water sources is a widespread global concern, particularly in developing nations, with various treatment approaches under extensive scientific investigation. In the present study, we fabricated electrospun composite polyvinylidene fluoride (PVDF) nanofibrous membranes exhibiting hierarchical surface roughness and superhydrophobicity for the removal of heavy metal ions via vacuum membrane distillation (VMD) process. The membranes were prepared by incorporating optimized dosing of silica nanoparticles, followed by a two-step membrane modification approach. These membranes exhibited notable characteristics, including elevated water contact angle (152.8 ± 3.2°), increased liquid entry pressure (127 ± 6 kPa), and… More > Graphic Abstract

    Performance Evaluation of Hierarchically Structured Superhydrophobic PVDF Membranes for Heavy Metals Removal via Membrane Distillation

  • Open Access

    ARTICLE

    Tailoring Tribological Behavior of PMMA Using Multi-Component Nanofillers: Insights into Friction, Wear, and Third-Body Flow Dynamics

    Du-Yi Wang1, Shih-Chen Shi1,*, Dieter Rahmadiawan1,2

    Journal of Polymer Materials, Vol.42, No.4, pp. 1075-1095, 2025, DOI:10.32604/jpm.2025.072263 - 26 December 2025

    Abstract Polymethyl methacrylate (PMMA) is widely used in diverse applications such as protective components (e.g., automotive lamp covers and structural casings), optical devices, and biomedical products, owing to its lightweight nature and impact resistance. However, its surface hardness and wear resistance remain insufficient under prolonged exposure to abrasive environments. In this study, a multi-filler strategy with nano-silica (SiO2), brominated lignin (Br-Lignin), and cellulose nanocrystals (CNCs) was employed to enhance PMMA tribological properties. SiO2 provided localized reinforcement, Br-Lignin established stable network structures, and CNCs improved compactness, enabling strong synergistic effects. As a result, the composites achieved up to More >

  • Open Access

    REVIEW

    Polymeric Nanofiber Scaffolds for Diabetic Wound Healing: A Review

    Rafl M. Kamil1, Shaik Nyamathulla1,*, Syed Mahmood1,2,3,4,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 959-992, 2025, DOI:10.32604/jpm.2025.072005 - 26 December 2025

    Abstract With the global diabetes epidemic, diabetic foot ulcers (DFUs) have become a major health burden, affecting approximately 18 million people worldwide each year, and account for about 80% of diabetes-related amputations. Five-year mortality among DFU patients approaches 30%, which is comparable to that of many malignancies. Yet despite standard wound care, only about 30%–40% of chronic DFUs achieve complete healing within 12 weeks. This persistent failure shows that conventional dressings remain passive supports. They do not counteract underlying pathologies such as ischemia, prolonged inflammation, and infection. Recent advances in polymeric nanofiber scaffolds, particularly electrospun matrices,… More > Graphic Abstract

    Polymeric Nanofiber Scaffolds for Diabetic Wound Healing: A Review

  • Open Access

    REVIEW

    Self-Assembly of Active Ingredients in Natural Traditional Chinese Medicine as the Controlled Drug Delivery and Targeted Treatment

    Huaao Jiang#, Bianyifan Xu#, Yang Gui, Ying Xia, Xu Yin, Chao Zhang, Yue Meng, Xin Yu, Yan Wang, Hongmei Xia*

    Journal of Polymer Materials, Vol.42, No.4, pp. 993-1033, 2025, DOI:10.32604/jpm.2025.071740 - 26 December 2025

    Abstract Traditional Chinese medicine (TCM) has a long history and is widely used to prevent and treat various diseases. With the development of modern technology, an increasing number of active ingredients—such as curcumin, berberine, and baicalin—have been identified and validated within TCM. Concurrently, the emergence of nanotechnology has led to the discovery of numerous nanomedicines based on the self-assembly of active ingredients from TCM. Polymer materials can enhance the bioavailability of these active compounds and reduce their toxic side effects. Moreover, compared to synthetic polymers, natural polymer materials offer advantages such as non-toxicity and high biosafety… More >

Displaying 11-20 on page 2 of 991. Per Page