Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (173)
  • Open Access

    ARTICLE

    Chitosan-Selenate Complex Improves Bioactive Profile and Antioxidant Response in Wheat Sprouts (Triticum aestivum L.)

    Jazmín Montserrat Gaucin-Delgado1, Cristian Oswaldo Solis-López2, Pablo Preciado-Rangel3, Bernardo Espinosa-Palomeque4, Francisco Gerardo Veliz-Deras2, Viridiana Contreras-Villarreal2, Ricardo Israel Ramírez-Gottfried5,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.12, pp. 3961-3973, 2025, DOI:10.32604/phyton.2025.072536 - 29 December 2025

    Abstract Selenium (Se) deficiency is a global health problem affecting more than 500 million people; crop biofortification is a sustainable strategy for its mitigation. This study investigated the effect of the application of selenate nanoparticles (SeO42−) and the combination of selenate (SeO42−) and chitosan (CS) (forming a SeO42−-CS complex) on the antioxidant profile, growth, biomass, bioactive compounds, enzymes, and Se accumulation of wheat (Triticum spp.) sprouts. Fourteen treatments were applied using a factorial design combining seven concentrations and two formulations: SeO42− and SeO42−-CS. It was identified that chitosan increased Se uptake efficiency by 30% versus conventional selenate. The optimal… More >

  • Open Access

    REVIEW

    Self-Assembly of Active Ingredients in Natural Traditional Chinese Medicine as the Controlled Drug Delivery and Targeted Treatment

    Huaao Jiang#, Bianyifan Xu#, Yang Gui, Ying Xia, Xu Yin, Chao Zhang, Yue Meng, Xin Yu, Yan Wang, Hongmei Xia*

    Journal of Polymer Materials, Vol.42, No.4, pp. 993-1033, 2025, DOI:10.32604/jpm.2025.071740 - 26 December 2025

    Abstract Traditional Chinese medicine (TCM) has a long history and is widely used to prevent and treat various diseases. With the development of modern technology, an increasing number of active ingredients—such as curcumin, berberine, and baicalin—have been identified and validated within TCM. Concurrently, the emergence of nanotechnology has led to the discovery of numerous nanomedicines based on the self-assembly of active ingredients from TCM. Polymer materials can enhance the bioavailability of these active compounds and reduce their toxic side effects. Moreover, compared to synthetic polymers, natural polymer materials offer advantages such as non-toxicity and high biosafety… More >

  • Open Access

    ARTICLE

    Synthesis and characterizations of Cu2BaSnS4 nanoparticles via solvothermal route

    G. Hao*, Z. Chen, R. Xian, W. Yifan

    Chalcogenide Letters, Vol.22, No.3, pp. 255-260, 2025, DOI:10.15251/CL.2025.223.255

    Abstract In present work, Cu2BaSnS4(CBTS) nanoparticles are reported solvothermally synthesized. The formation of single-phase trigonal structure of CBTS nanoparticles is confirmed by XRD and Raman spectroscopic analysis. SEM studies reveal that CBTS exhibits flower shaped structure self-assembling by nanosheets with uniform average thickness 30nm. CBTS materials show abroad absorption in the complete visible range, providing a band-gap value of 1.58eV, indicating potential applications in photocvoltaics. The excellent MB degradation efficiency of 93% under visible light within 100min is achieved, suggesting CBTS is a potential material for effective solar light photocatalytic application. Meanwhile, electrical properties are measured up More >

  • Open Access

    ARTICLE

    Optimizing the structure, morphological and optical properties of Co-doped CDS, nanoparticles synthesized at various doping concentration and design sensors for optimal application

    R. Rajeeva,b,*, C. M. S. Negia

    Chalcogenide Letters, Vol.22, No.5, pp. 469-480, 2025, DOI:10.15251/CL.2025.225.469

    Abstract Cobalt-doped cadmium sulphide nanoparticles of semiconductors (CDs: Co NPs) were synthesised using various cobalt concentrations utilising a microwave-assisted approach. Debye-Scherer equation revealed the nanoparticles' size range to be between 2 and 4 nm. Diffraction from X-rays revealed a zinc mix structure. According to the structure in the optical bandgap energies indicates that, doping has systematically raised the bandgap energy as the doping concentration raises. The composition of the nanoparticles which was verified by EDAX, validated the effective integration of cobalt into the CdS structure. The detection of different functional and vibrational groups was performed at More >

  • Open Access

    ARTICLE

    Enhancing anticancer, antioxidant, and antibacterial activities of chalcogen-based SnSe nanoparticles synthesized through the co-precipitation method

    H. A. Rather1,*, J. B. A. Wahid2, M. A. Dar3, L. Guganathan4, U. A. Dar5, P. Arularasan6, S. E. I. Yagoub7, L. G. Amin7

    Chalcogenide Letters, Vol.22, No.5, pp. 461-468, 2025, DOI:10.15251/CL.2025.225.461

    Abstract SnSe powdered nanoparticles (NPs) are prepared using the co-precipitation method. The powdered NPs were studied using X-ray diffraction (XRD), UV-absorbance spectroscopy, and scanning electron microscopy (SEM) characterization techniques. The XRD result indicates that NPs are orthorhombic with a crystalline size of 4 nm for TS-1, 6 nm for TS-2, and 13 nm for TS-3, respectively. The SEM images show the surface morphology of the prepared NPs is not fully spherical, but semi-flower-like. The optical properties of the powdered NPs are found by UV-Vis absorbance spectroscopy, in which the highest absorbance was found between 200 nm More >

  • Open Access

    ARTICLE

    Synthesis of MoS2/Fe3O4 composites for the detection of liver cancer biomarker alpha-fetoprotein

    C. B. Cuia,b, G. C. Yangb, Z. Zhanga,, X. J. Wangc,

    Chalcogenide Letters, Vol.22, No.6, pp. 507-520, 2025, DOI:10.15251/CL.2025.226.507

    Abstract This research introduces an innovative aptasensor for detecting alpha-fetoprotein with exceptional sensitivity and specificity, employing a novel MoS2/Fe3O4 composite fabricated through an advanced in-situ growth methodology. The composite exhibited a hierarchical flower-like structure with uniformly distributed Fe3O4 nanoparticles, confirmed by SEM, XRD, and Raman spectroscopy. The MoS2/Fe3O4 composite demonstrated a 66% increase in surface area (7.16 m²/g) compared to pristine MoS2, enhancing aptamer immobilization and electron transfer efficiency. Electrochemical characterization revealed a significant increase in interfacial resistance upon AFP binding, with a detection limit of 0.3 pg/mL and a dual linear range of 0.001–0.1 ng/mL and 0.1–100 More >

  • Open Access

    ARTICLE

    Synthesis and photocatalytic performance of ZnS nanoparticles via electrospinning assisted hydrothermal technique

    T. L. Yanga, P. Y. Linb, Y. S. Fuc, C. Y. Luoc, K. C. Hsua,*

    Chalcogenide Letters, Vol.22, No.7, pp. 625-636, 2025, DOI:10.15251/CL.2025.227.625

    Abstract In this study, high-crystallinity zinc sulfide (ZnS) at the nanoscale was synthesized using a combination of electrospinning and hydrothermal techniques. Initially, polyvinyl butyral (PVB)/ZnS composite nanofibers were fabricated via electrospinning. Subsequently, a hydrothermal reaction was employed to induce a dissolution-recrystallization mechanism, enabling the gradual formation of highly crystalline ZnS nanoparticles. The structural, morphological, and compositional characteristics of the ZnS nanoparticles were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Finally, the photocatalytic activity of three different ZnS materials—synthesized via electrospinning, hydrothermal treatment, and hydrothermal-assisted electrospinning—were More >

  • Open Access

    ARTICLE

    Synthesis, characterization of zirconium doped cobalt nanoparticles and study of their thermoelectric properties

    Y. Arooja, A. Farhanb, S. Maqsooda,c, A. Eruma, M. Ishaqd, S. Rafiquea, A. Khalidb, F. Wazahata, M. A. Qamare,*

    Chalcogenide Letters, Vol.22, No.8, pp. 707-717, 2025, DOI:10.15251/CL.2025.228.707

    Abstract Chemical co-precipitation synthesis was used to make pure and zirconium-doped cobalt sulfide (Co3S4) nanoparticles (NPs). Important characterizations such as FTIR, UV-VIS, Raman, PL, SEM, XRD, and four probe methods were used to examine the influence of the Zr (0%, 5%, 10%, 15%, and 20%) doping on optical, electrical, structural, and thermoelectric characteristics of Co3S4 NPs. X-ray diffraction and SEM examination verified the cubic structure and grain size of pure and Zr-doped Co3S4-NPs. The FTIR spectrum revealed the rotational and vibrational modes linked to the material's surface. The material is optimal for photocatalytic activity with a redshift More >

  • Open Access

    ARTICLE

    Sonochemically synthesised nitrogen-doped CdS nanoparticles for photovoltaic applications

    S. R. Ahmeda,*, M. V. V. K. Srinivas Prasadb, K. Keerthivasanc

    Chalcogenide Letters, Vol.22, No.8, pp. 679-691, 2025, DOI:10.15251/CL.2025.228.679

    Abstract This work used a sonication-aided approach to make Cadmium sulfide nanoparticles and Nitrogen-doped CdS nanoparticles. Doping Nitrogen into CdS NPs enhances the material's electrical, chemical, and structural properties by altering its surface area and functional sites. XRD, FTIR, SEM/EDX, TGA, UV-Vis, and PSA are used to evaluate the characteristic features of CdS NPs. The photovoltaic responses of the prepared CdS and CdS-N NPs were evaluated by electrochemical impedance and IV analysis. The obtained XRD data confirms that nitrogen doping significantly changes the crystal size of CdS NPs. The XPS spectrum depicts the presence of trace More >

  • Open Access

    ARTICLE

    Influence of processing parameters on physiochemical properties of cadmium sulfide nanoparticles

    S. R. Ahmeda,*, M. V. V. K. S. Prasada, K. Keerthivasanb

    Chalcogenide Letters, Vol.22, No.9, pp. 765-776, 2025, DOI:10.15251/CL.2025.229.765

    Abstract This study focuses on optimizing practical synthesis to produce ultrafine CdS nanoparticles. Three separate chemical synthesis processes, namely microwave, wetchemical, and sonication methods, are used to generate CdS nanoparticles. Moringa oleifera leaf extract employed green syntheses of CdS nanoparticles are also performed for additional discussions. The generated CdS nanoparticles were subjected to a comparative assessment to identify the most effective processing method for synthesizing CdS nanoparticles. Even though the processing parameters were altered over their synthesis, the hexagonal structure was retained in the CdS nanoparticles. The observed results of CdS nanoparticles from XRD, SEM/EDX, and More >

Displaying 1-10 on page 1 of 173. Per Page