Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (87)
  • Open Access

    ARTICLE

    From Similarities to Probabilities: Feature Engineering for Predicting Drugs’ Adverse Reactions

    Nahla H. Barakat*, Ahmed H. ElSabbagh

    Intelligent Automation & Soft Computing, Vol.32, No.2, pp. 1207-1224, 2022, DOI:10.32604/iasc.2022.022104

    Abstract Social media recently became convenient platforms for different groups with common concerns to share their experiences, including Adverse Drug Reactions (ADRs). In this paper, we propose a two stage intelligent algorithm which we call “Simi_to_Prob”, that utilizes social media forums; for ranking ADRs, and evaluating the ADRs prevalence considering different age and gender groups as its first stage. In the second stage, ADRs are predicted utilizing a different data set from the Food and Drug Administration (FDA). In particular, Natural Language Processing (NLP) is used on social media to extract ranked lists of ADRs, which… More >

  • Open Access

    ARTICLE

    Course Evaluation Based on Deep Learning and SSA Hyperparameters Optimization

    Alaa A. El-Demerdash, Sherif E. Hussein, John FW Zaki*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 941-959, 2022, DOI:10.32604/cmc.2022.021839

    Abstract Sentiment analysis attracts the attention of Egyptian Decision-makers in the education sector. It offers a viable method to assess education quality services based on the students’ feedback as well as that provides an understanding of their needs. As machine learning techniques offer automated strategies to process big data derived from social media and other digital channels, this research uses a dataset for tweets' sentiments to assess a few machine learning techniques. After dataset preprocessing to remove symbols, necessary stemming and lemmatization is performed for features extraction. This is followed by several machine learning techniques and… More >

  • Open Access

    ARTICLE

    Benchmarking Performance of Document Level Classification and Topic Modeling

    Muhammad Shahid Bhatti1,*, Azmat Ullah1, Rohaya Latip2, Abid Sohail1, Anum Riaz1, Rohail Hassan3

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 125-141, 2022, DOI:10.32604/cmc.2022.020083

    Abstract Text classification of low resource language is always a trivial and challenging problem. This paper discusses the process of Urdu news classification and Urdu documents similarity. Urdu is one of the most famous spoken languages in Asia. The implementation of computational methodologies for text classification has increased over time. However, Urdu language has not much experimented with research, it does not have readily available datasets, which turn out to be the primary reason behind limited research and applying the latest methodologies to the Urdu. To overcome these obstacles, a medium-sized dataset having six categories is… More >

  • Open Access

    ARTICLE

    A Novel Auto-Annotation Technique for Aspect Level Sentiment Analysis

    Muhammad Aasim Qureshi1,*, Muhammad Asif1, Mohd Fadzil Hassan2, Ghulam Mustafa1, Muhammad Khurram Ehsan1, Aasim Ali1, Unaza Sajid1

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4987-5004, 2022, DOI:10.32604/cmc.2022.020544

    Abstract In machine learning, sentiment analysis is a technique to find and analyze the sentiments hidden in the text. For sentiment analysis, annotated data is a basic requirement. Generally, this data is manually annotated. Manual annotation is time consuming, costly and laborious process. To overcome these resource constraints this research has proposed a fully automated annotation technique for aspect level sentiment analysis. Dataset is created from the reviews of ten most popular songs on YouTube. Reviews of five aspects—voice, video, music, lyrics and song, are extracted. An N-Gram based technique is proposed. Complete dataset consists of… More >

  • Open Access

    ARTICLE

    An Optimized Deep Learning Model for Emotion Classification in Tweets

    Chinu Singla1, Fahd N. Al-Wesabi2,3, Yash Singh Pathania1, Badria Sulaiman Alfurhood4, Anwer Mustafa Hilal5,*, Mohammed Rizwanullah5, Manar Ahmed Hamza5, Mohammad Mahzari6

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 6365-6380, 2022, DOI:10.32604/cmc.2022.020480

    Abstract The task of automatically analyzing sentiments from a tweet has more use now than ever due to the spectrum of emotions expressed from national leaders to the average man. Analyzing this data can be critical for any organization. Sentiments are often expressed with different intensity and topics which can provide great insight into how something affects society. Sentiment analysis in Twitter mitigates the various issues of analyzing the tweets in terms of views expressed and several approaches have already been proposed for sentiment analysis in twitter. Resources used for analyzing tweet emotions are also briefly… More >

  • Open Access

    ARTICLE

    DLBT: Deep Learning-Based Transformer to Generate Pseudo-Code from Source Code

    Walaa Gad1,*, Anas Alokla1, Waleed Nazih2, Mustafa Aref1, Abdel-badeeh Salem1

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3117-3132, 2022, DOI:10.32604/cmc.2022.019884

    Abstract Understanding the content of the source code and its regular expression is very difficult when they are written in an unfamiliar language. Pseudo-code explains and describes the content of the code without using syntax or programming language technologies. However, writing Pseudo-code to each code instruction is laborious. Recently, neural machine translation is used to generate textual descriptions for the source code. In this paper, a novel deep learning-based transformer (DLBT) model is proposed for automatic Pseudo-code generation from the source code. The proposed model uses deep learning which is based on Neural Machine Translation (NMT)… More >

  • Open Access

    ARTICLE

    Epilepsy Radiology Reports Classification Using Deep Learning Networks

    Sengul Bayrak1,2, Eylem Yucel2,*, Hidayet Takci3

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3589-3607, 2022, DOI:10.32604/cmc.2022.018742

    Abstract The automatic and accurate classification of Magnetic Resonance Imaging (MRI) radiology report is essential for the analysis and interpretation epilepsy and non-epilepsy. Since the majority of MRI radiology reports are unstructured, the manual information extraction is time-consuming and requires specific expertise. In this paper, a comprehensive method is proposed to classify epilepsy and non-epilepsy real brain MRI radiology text reports automatically. This method combines the Natural Language Processing technique and statistical Machine Learning methods. 122 real MRI radiology text reports (97 epilepsy, 25 non-epilepsy) are studied by our proposed method which consists of the following… More >

  • Open Access

    ARTICLE

    Applying Machine Learning Techniques for Religious Extremism Detection on Online User Contents

    Shynar Mussiraliyeva1, Batyrkhan Omarov1,*, Paul Yoo1,2, Milana Bolatbek1

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 915-934, 2022, DOI:10.32604/cmc.2022.019189

    Abstract In this research paper, we propose a corpus for the task of detecting religious extremism in social networks and open sources and compare various machine learning algorithms for the binary classification problem using a previously created corpus, thereby checking whether it is possible to detect extremist messages in the Kazakh language. To do this, the authors trained models using six classic machine-learning algorithms such as Support Vector Machine, Decision Tree, Random Forest, K Nearest Neighbors, Naive Bayes, and Logistic Regression. To increase the accuracy of detecting extremist texts, we used various characteristics such as Statistical More >

  • Open Access

    ARTICLE

    Automatic Persian Text Summarization Using Linguistic Features from Text Structure Analysis

    Ebrahim Heidary1, Hamïd Parvïn2,3,4,*, Samad Nejatian5,6, Karamollah Bagherifard1,6, Vahideh Rezaie6,7

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 2845-2861, 2021, DOI:10.32604/cmc.2021.014361

    Abstract With the remarkable growth of textual data sources in recent years, easy, fast, and accurate text processing has become a challenge with significant payoffs. Automatic text summarization is the process of compressing text documents into shorter summaries for easier review of its core contents, which must be done without losing important features and information. This paper introduces a new hybrid method for extractive text summarization with feature selection based on text structure. The major advantage of the proposed summarization method over previous systems is the modeling of text structure and relationship between entities in the More >

  • Open Access

    ARTICLE

    Semantic Analysis of Urdu English Tweets Empowered by Machine Learning

    Nadia Tabassum1, Tahir Alyas2, Muhammad Hamid3,*, Muhammad Saleem4, Saadia Malik5, Zain Ali2, Umer Farooq2

    Intelligent Automation & Soft Computing, Vol.30, No.1, pp. 175-186, 2021, DOI:10.32604/iasc.2021.018998

    Abstract Development in the field of opinion mining and sentiment analysis has been rapid and aims to explore views or texts on various social media sites through machine-learning techniques with the sentiment, subjectivity analysis and calculations of polarity. Sentiment analysis is a natural language processing strategy used to decide if the information is positive, negative, or neutral and it is frequently performed on literature information to help organizations screen brand, item sentiment in client input, and comprehend client needs. In this paper, two strategies for sentiment analysis is proposed for word embedding and a bag of… More >

Displaying 61-70 on page 7 of 87. Per Page