Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (36)
  • Open Access

    ARTICLE

    Deep Feature-Driven Hybrid Temporal Learning and Instance-Based Classification for DDoS Detection in Industrial Control Networks

    Haohui Su1, Xuan Zhang1,*, Lvjun Zheng1, Xiaojie Shen2, Hua Liao1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072093 - 12 January 2026

    Abstract Distributed Denial-of-Service (DDoS) attacks pose severe threats to Industrial Control Networks (ICNs), where service disruption can cause significant economic losses and operational risks. Existing signature-based methods are ineffective against novel attacks, and traditional machine learning models struggle to capture the complex temporal dependencies and dynamic traffic patterns inherent in ICN environments. To address these challenges, this study proposes a deep feature-driven hybrid framework that integrates Transformer, BiLSTM, and KNN to achieve accurate and robust DDoS detection. The Transformer component extracts global temporal dependencies from network traffic flows, while BiLSTM captures fine-grained sequential dynamics. The learned… More >

  • Open Access

    ARTICLE

    Intelligent Estimation of ESR and C in AECs for Buck Converters Using Signal Processing and ML Regression

    Acácio M. R. Amaral1,2,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3825-3859, 2025, DOI:10.32604/cmc.2025.067179 - 23 September 2025

    Abstract Power converters are essential components in modern life, being widely used in industry, automation, transportation, and household appliances. In many critical applications, their failure can lead not only to financial losses due to operational downtime but also to serious risks to human safety. The capacitors forming the output filter, typically aluminum electrolytic capacitors (AECs), are among the most critical and susceptible components in power converters. The electrolyte in AECs often evaporates over time, causing the internal resistance to rise and the capacitance to drop, ultimately leading to component failure. Detecting this fault requires measuring the… More >

  • Open Access

    ARTICLE

    PAV-A-kNN: A Novel Approachable kNN Query Method in Road Network Environments

    Kailai Zhou*, Weikang Xia, Jiatai Wang

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3217-3240, 2025, DOI:10.32604/cmc.2025.065334 - 03 July 2025

    Abstract Ride-hailing (e.g., DiDi and Uber) has become an important tool for modern urban mobility. To improve the utilization efficiency of ride-hailing vehicles, a novel query method, called Approachable k-nearest neighbor (A-kNN), has recently been proposed in the industry. Unlike traditional kNN queries, A-kNN considers not only the road network distance but also the availability status of vehicles. In this context, even vehicles with passengers can still be considered potential candidates for dispatch if their destinations are near the requester’s location. The V-Tree-based query method, due to its structural characteristics, is capable of efficiently finding k-nearest moving objects within… More >

  • Open Access

    ARTICLE

    Machine Learning Stroke Prediction in Smart Healthcare: Integrating Fuzzy K-Nearest Neighbor and Artificial Neural Networks with Feature Selection Techniques

    Abdul Ahad1,2, Ira Puspitasari1,3,*, Jiangbin Zheng2, Shamsher Ullah4, Farhan Ullah5, Sheikh Tahir Bakhsh6, Ivan Miguel Pires7,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5115-5134, 2025, DOI:10.32604/cmc.2025.062605 - 06 March 2025

    Abstract This research explores the use of Fuzzy K-Nearest Neighbor (F-KNN) and Artificial Neural Networks (ANN) for predicting heart stroke incidents, focusing on the impact of feature selection methods, specifically Chi-Square and Best First Search (BFS). The study demonstrates that BFS significantly enhances the performance of both classifiers. With BFS preprocessing, the ANN model achieved an impressive accuracy of 97.5%, precision and recall of 97.5%, and an Receiver Operating Characteristics (ROC) area of 97.9%, outperforming the Chi-Square-based ANN, which recorded an accuracy of 91.4%. Similarly, the F-KNN model with BFS achieved an accuracy of 96.3%, precision More >

  • Open Access

    ARTICLE

    Advancing Brain Tumor Classification: Evaluating the Efficacy of Machine Learning Models Using Magnetic Resonance Imaging

    Khalid Jamil1, Wahab Khan1, Bilal Khan2, Sarwar Shah Khan2,*

    Digital Engineering and Digital Twin, Vol.3, pp. 1-16, 2025, DOI:10.32604/dedt.2025.058943 - 28 February 2025

    Abstract Brain tumors are one of the deadliest cancers, partly because they’re often difficult to detect early or with precision. Standard Magnetic Resonance Imaging (MRI) imaging, though essential, has limitations, it can miss subtle or early-stage tumors, which delays diagnosis and affects patient outcomes. This study aims to tackle these challenges by exploring how machine learning (ML) can improve the accuracy of brain tumor identification from MRI scans. Motivated by the potential for artificial intillegence (AI) to boost diagnostic accuracy where traditional methods fall short, we tested several ML models, with a focus on the K-Nearest More >

  • Open Access

    ARTICLE

    An Enhanced Integrated Method for Healthcare Data Classification with Incompleteness

    Sonia Goel1,#, Meena Tushir1, Jyoti Arora2, Tripti Sharma2, Deepali Gupta3, Ali Nauman4,#, Ghulam Muhammad5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3125-3145, 2024, DOI:10.32604/cmc.2024.054476 - 18 November 2024

    Abstract In numerous real-world healthcare applications, handling incomplete medical data poses significant challenges for missing value imputation and subsequent clustering or classification tasks. Traditional approaches often rely on statistical methods for imputation, which may yield suboptimal results and be computationally intensive. This paper aims to integrate imputation and clustering techniques to enhance the classification of incomplete medical data with improved accuracy. Conventional classification methods are ill-suited for incomplete medical data. To enhance efficiency without compromising accuracy, this paper introduces a novel approach that combines imputation and clustering for the classification of incomplete data. Initially, the linear More >

  • Open Access

    ARTICLE

    Fine-Tuning Cyber Security Defenses: Evaluating Supervised Machine Learning Classifiers for Windows Malware Detection

    Islam Zada1,*, Mohammed Naif Alatawi2, Syed Muhammad Saqlain1, Abdullah Alshahrani3, Adel Alshamran4, Kanwal Imran5, Hessa Alfraihi6

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2917-2939, 2024, DOI:10.32604/cmc.2024.052835 - 15 August 2024

    Abstract Malware attacks on Windows machines pose significant cybersecurity threats, necessitating effective detection and prevention mechanisms. Supervised machine learning classifiers have emerged as promising tools for malware detection. However, there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware detection. Addressing this gap can provide valuable insights for enhancing cybersecurity strategies. While numerous studies have explored malware detection using machine learning techniques, there is a lack of systematic comparison of supervised classifiers for Windows malware detection. Understanding the relative effectiveness of these classifiers can inform the selection of… More >

  • Open Access

    ARTICLE

    Density Clustering Algorithm Based on KD-Tree and Voting Rules

    Hui Du, Zhiyuan Hu*, Depeng Lu, Jingrui Liu

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3239-3259, 2024, DOI:10.32604/cmc.2024.046314 - 15 May 2024

    Abstract Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets with uneven density. Additionally, they incur substantial computational costs when applied to high-dimensional data due to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset and compute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similarity matrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a vote for the point with the highest density among its KNN. By utilizing the vote counts More >

  • Open Access

    ARTICLE

    Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection

    Hala AlShamlan*, Halah AlMazrua*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 675-694, 2024, DOI:10.32604/cmc.2024.048146 - 25 April 2024

    Abstract In this study, our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization (GWO) with Harris Hawks Optimization (HHO) for feature selection. The motivation for utilizing GWO and HHO stems from their bio-inspired nature and their demonstrated success in optimization problems. We aim to leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification. We selected leave-one-out cross-validation (LOOCV) to evaluate the performance of both two widely used classifiers, k-nearest neighbors (KNN) and support vector machine… More >

  • Open Access

    ARTICLE

    Outsmarting Android Malware with Cutting-Edge Feature Engineering and Machine Learning Techniques

    Ahsan Wajahat1, Jingsha He1, Nafei Zhu1, Tariq Mahmood2,3, Tanzila Saba2, Amjad Rehman Khan2, Faten S. Alamri4,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 651-673, 2024, DOI:10.32604/cmc.2024.047530 - 25 April 2024

    Abstract The growing usage of Android smartphones has led to a significant rise in incidents of Android malware and privacy breaches. This escalating security concern necessitates the development of advanced technologies capable of automatically detecting and mitigating malicious activities in Android applications (apps). Such technologies are crucial for safeguarding user data and maintaining the integrity of mobile devices in an increasingly digital world. Current methods employed to detect sensitive data leaks in Android apps are hampered by two major limitations they require substantial computational resources and are prone to a high frequency of false positives. This… More >

Displaying 1-10 on page 1 of 36. Per Page