Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Topology Optimization of Metamaterial Microstructures for Negative Poisson’s Ratio under Large Deformation Using a Gradient-Free Method

    Weida Wu, Yiqiang Wang, Zhonghao Gao, Pai Liu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2001-2026, 2024, DOI:10.32604/cmes.2023.046670

    Abstract Negative Poisson’s ratio (NPR) metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption. However, when subjected to significant stretching, NPR metamaterials designed under small strain assumption may experience a rapid degradation in NPR performance. To address this issue, this study aims to design metamaterials maintaining a targeted NPR under large deformation by taking advantage of the geometry nonlinearity mechanism. A representative periodic unit cell is modeled considering geometry nonlinearity, and its topology is designed using a gradient-free method. The unit cell microstructural topologies are described with the material-field series-expansion (MFSE) method. The… More >

  • Open Access

    ARTICLE

    Data-Driven Structural Design Optimization for Petal-Shaped Auxetics Using Isogeometric Analysis

    Yingjun Wang1, Zhongyuan Liao1, Shengyu Shi1, *, Zhenpei Wang2, *, Leong Hien Poh3

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.2, pp. 433-458, 2020, DOI:10.32604/cmes.2020.08680

    Abstract Focusing on the structural optimization of auxetic materials using data-driven methods, a back-propagation neural network (BPNN) based design framework is developed for petal-shaped auxetics using isogeometric analysis. Adopting a NURBS-based parametric modelling scheme with a small number of design variables, the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method, and demonstrated in this work to give high accuracy and efficiency. Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis, in contrast to the generally complex procedures of typical shape and size sensitivity approaches. More >

Displaying 1-10 on page 1 of 2. Per Page