Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,908)
  • Open Access


    Intrusion Detection System for Smart Industrial Environments with Ensemble Feature Selection and Deep Convolutional Neural Networks

    Asad Raza1,*, Shahzad Memon1, Muhammad Ali Nizamani1, Mahmood Hussain Shah2

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 545-566, 2024, DOI:10.32604/iasc.2024.051779

    Abstract Smart Industrial environments use the Industrial Internet of Things (IIoT) for their routine operations and transform their industrial operations with intelligent and driven approaches. However, IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet. Traditional signature-based IDS are effective in detecting known attacks, but they are unable to detect unknown emerging attacks. Therefore, there is the need for an IDS which can learn from data and detect new threats. Ensemble Machine Learning (ML) and individual Deep Learning (DL) based IDS have been developed, and these individual models achieved… More >

  • Open Access


    Improving VQA via Dual-Level Feature Embedding Network

    Yaru Song*, Huahu Xu, Dikai Fang

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 397-416, 2024, DOI:10.32604/iasc.2023.040521

    Abstract Visual Question Answering (VQA) has sparked widespread interest as a crucial task in integrating vision and language. VQA primarily uses attention mechanisms to effectively answer questions to associate relevant visual regions with input questions. The detection-based features extracted by the object detection network aim to acquire the visual attention distribution on a predetermined detection frame and provide object-level insights to answer questions about foreground objects more effectively. However, it cannot answer the question about the background forms without detection boxes due to the lack of fine-grained details, which is the advantage of grid-based features. In… More >

  • Open Access


    Multi-Scale Location Attention Model for Spatio-Temporal Prediction of Disease Incidence

    Youshen Jiang1, Tongqing Zhou1, Zhilin Wang2, Zhiping Cai1,*, Qiang Ni3

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 585-597, 2024, DOI:10.32604/iasc.2023.030221

    Abstract Due to the increasingly severe challenges brought by various epidemic diseases, people urgently need intelligent outbreak trend prediction. Predicting disease onset is very important to assist decision-making. Most of the existing work fails to make full use of the temporal and spatial characteristics of epidemics, and also relies on multivariate data for prediction. In this paper, we propose a Multi-Scale Location Attention Graph Neural Networks (MSLAGNN) based on a large number of Centers for Disease Control and Prevention (CDC) patient electronic medical records research sequence source data sets. In order to understand the geography and… More >

  • Open Access


    Quantifying Uncertainty in Dielectric Solids’ Mechanical Properties Using Isogeometric Analysis and Conditional Generative Adversarial Networks

    Shuai Li1, Xiaodong Zhao1,2,*, Jinghu Zhou1, Xiyue Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2587-2611, 2024, DOI:10.32604/cmes.2024.052203

    Abstract Accurate quantification of the uncertainty in the mechanical characteristics of dielectric solids is crucial for advancing their application in high-precision technological domains, necessitating the development of robust computational methods. This paper introduces a Conditional Generation Adversarial Network Isogeometric Analysis (CGAN-IGA) to assess the uncertainty of dielectric solids’ mechanical characteristics. IGA is utilized for the precise computation of electric potentials in dielectric, piezoelectric, and flexoelectric materials, leveraging its advantage of integrating seamlessly with Computer-Aided Design (CAD) models to maintain exact geometrical fidelity. The CGAN method is highly efficient in generating models for piezoelectric and flexoelectric materials, More >

  • Open Access


    In-Depth Study of Potential-Based Routing and New Exploration of Its Scheduling Integration

    Jihoon Sung1, Yeunwoong Kyung2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2891-2911, 2024, DOI:10.32604/cmes.2024.051772

    Abstract Industrial wireless mesh networks (WMNs) have been widely deployed in various industrial sectors, providing services such as manufacturing process monitoring, equipment control, and sensor data collection. A notable characteristic of industrial WMNs is their distinct traffic pattern, where the majority of traffic flows originate from mesh nodes and are directed towards mesh gateways. In this context, this paper adopts and revisits a routing algorithm known as ALFA (autonomous load-balancing field-based anycast routing), tailored specifically for anycast (one-to-one-of-many) networking in WMNs, where traffic flows can be served through any one of multiple gateways. In essence, the… More >

  • Open Access


    Computational Fluid Dynamics Approach for Predicting Pipeline Response to Various Blast Scenarios: A Numerical Modeling Study

    Farman Saifi1,*, Mohd Javaid1, Abid Haleem1, S. M. Anas2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2747-2777, 2024, DOI:10.32604/cmes.2024.051490

    Abstract Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infrastructure systems and networks capable of withstanding blast loading. Initially centered on high-profile facilities such as embassies and petrochemical plants, this concern now extends to a wider array of infrastructures and facilities. Engineers and scholars increasingly prioritize structural safety against explosions, particularly to prevent disproportionate collapse and damage to nearby structures. Urbanization has further amplified the reliance on oil and gas pipelines, making them vital for urban life and prime targets for terrorist activities. Consequently, there is a growing imperative for computational… More >

  • Open Access


    Dynamic Hypergraph Modeling and Robustness Analysis for SIoT

    Yue Wan, Nan Jiang*, Ziyu Liu

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 3017-3034, 2024, DOI:10.32604/cmes.2024.051101

    Abstract The Social Internet of Things (SIoT) integrates the Internet of Things (IoT) and social networks, taking into account the social attributes of objects and diversifying the relationship between humans and objects, which overcomes the limitations of the IoT’s focus on associations between objects. Artificial Intelligence (AI) technology is rapidly evolving. It is critical to build trustworthy and transparent systems, especially with system security issues coming to the surface. This paper emphasizes the social attributes of objects and uses hypergraphs to model the diverse entities and relationships in SIoT, aiming to build an SIoT hypergraph generation… More >

  • Open Access


    CoopAI-Route: DRL Empowered Multi-Agent Cooperative System for Efficient QoS-Aware Routing for Network Slicing in Multi-Domain SDN

    Meignanamoorthi Dhandapani*, V. Vetriselvi, R. Aishwarya

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2449-2486, 2024, DOI:10.32604/cmes.2024.050986

    Abstract The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale. Network slicing is crucial in delivering services for different, demanding vertical applications in this context. Next-generation applications have time-sensitive requirements and depend on the most efficient routing path to ensure packets reach their intended destinations. However, the existing IP (Internet Protocol) over a multi-domain network faces challenges in enforcing network slicing due to minimal collaboration and information sharing among network operators. Conventional inter-domain routing methods, like Border Gateway Protocol (BGP), cannot make routing decisions based on performance,… More >

  • Open Access


    LSTM Based Neural Network Model for Anomaly Event Detection in Care-Independent Smart Homes

    Brij B. Gupta1,2,3,*, Akshat Gaurav4, Razaz Waheeb Attar5, Varsha Arya6,7, Ahmed Alhomoud8, Kwok Tai Chui9

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2689-2706, 2024, DOI:10.32604/cmes.2024.050825

    Abstract This study introduces a long-short-term memory (LSTM)-based neural network model developed for detecting anomaly events in care-independent smart homes, focusing on the critical application of elderly fall detection. It balances the dataset using the Synthetic Minority Over-sampling Technique (SMOTE), effectively neutralizing bias to address the challenge of unbalanced datasets prevalent in time-series classification tasks. The proposed LSTM model is trained on the enriched dataset, capturing the temporal dependencies essential for anomaly recognition. The model demonstrated a significant improvement in anomaly detection, with an accuracy of 84%. The results, detailed in the comprehensive classification and confusion More >

  • Open Access


    GliomaCNN: An Effective Lightweight CNN Model in Assessment of Classifying Brain Tumor from Magnetic Resonance Images Using Explainable AI

    Md. Atiqur Rahman1, Mustavi Ibne Masum1, Khan Md Hasib2, M. F. Mridha3,*, Sultan Alfarhood4, Mejdl Safran4,*, Dunren Che5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2425-2448, 2024, DOI:10.32604/cmes.2024.050760

    Abstract Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading cause of global mortality. This study addresses the pressing issue of brain tumor classification using Magnetic resonance imaging (MRI). It focuses on distinguishing between Low-Grade Gliomas (LGG) and High-Grade Gliomas (HGG). LGGs are benign and typically manageable with surgical resection, while HGGs are malignant and more aggressive. The research introduces an innovative custom convolutional neural network (CNN) model, Glioma-CNN. GliomaCNN stands out as a lightweight CNN model compared to its predecessors. The research utilized the BraTS 2020 More >

Displaying 1-10 on page 1 of 2908. Per Page