Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,663)
  • Open Access

    ARTICLE

    Adaptive Grid-Interface Control for Power Coordination in Multi-Microgrid Energy Networks

    Sk. A. Shezan*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.073418 - 27 December 2025

    Abstract Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization. However, the high penetration of intermittent renewable sources often causes frequency deviations, voltage fluctuations, and poor reactive power coordination, posing serious challenges to grid stability. Conventional Interconnection Flow Controllers (IFCs) primarily regulate active power flow and fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks. To overcome these limitations, this study proposes an enhanced Interconnection Flow Controller (e-IFC) that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller (IRFC) within a unified adaptive… More >

  • Open Access

    ARTICLE

    Design of 400 V-10 kV Multi-Voltage Grades of Dual Winding Induction Generator for Grid Maintenance Vehicle

    Tiankui Sun*, Shuyi Zhuang, Yongling Lu, Wenqiang Xie, Ning Guo, Sudi Xu

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.070213 - 27 December 2025

    Abstract To ensure an uninterrupted power supply, mobile power sources (MPS) are widely deployed in power grids during emergencies. Comprising mobile emergency generators (MEGs) and mobile energy storage systems (MESS), MPS are capable of supplying power to critical loads and serving as backup sources during grid contingencies, offering advantages such as flexibility and high resilience through electricity delivery via transportation networks. This paper proposes a design method for a 400 V–10 kV Dual-Winding Induction Generator (DWIG) intended for MEG applications, employing an improved particle swarm optimization (PSO) algorithm based on a back-propagation neural network (BPNN). A… More >

  • Open Access

    ARTICLE

    Coordinated Source–Network–Storage Inertia Control Strategy Based on Wind Power Transmission via MMC-HVDC System

    Mengxuan Shi1, Lintao Li2, Dejun Shao1, Xiaojie Pan1, Xingyu Shi2,*, Yuxun Wang2

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069915 - 27 December 2025

    Abstract In wind power transmission via modular multilevel converter based high voltage direct current (MMC-HVDC) systems, under traditional control strategies, MMC-HVDC cannot provide inertia support to the receiving-end grid (REG) during disturbances. Moreover, due to the frequency decoupling between the two ends of the MMC-HVDC, the sending-end wind farm (SEWF) cannot obtain the frequency variation information of the REG to provide inertia response. Therefore, this paper proposes a novel coordinated source-network-storage inertia control strategy based on wind power transmission via MMC-HVDC system. First, the grid-side MMC station (GS-MMC) maps the frequency variations of the REG to… More >

  • Open Access

    ARTICLE

    Defect Identification Method of Power Grid Secondary Equipment Based on Coordination of Knowledge Graph and Bayesian Network Fusion

    Jun Xiong*, Peng Yang, Bohan Chen, Zeming Chen

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069438 - 27 December 2025

    Abstract The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system. However, various defects could be produced in the secondary equipment during long-term operation. The complex relationship between the defect phenomenon and multi-layer causes and the probabilistic influence of secondary equipment cannot be described through knowledge extraction and fusion technology by existing methods, which limits the real-time and accuracy of defect identification. Therefore, a defect recognition method based on the Bayesian network and knowledge graph fusion is proposed. The defect data of secondary equipment is… More >

  • Open Access

    ARTICLE

    Optimal Dispatch of Urban Distribution Networks Considering Virtual Power Plant Coordination under Extreme Scenarios

    Yong Li, Yuxuan Chen*, Jiahui He, Guowei He, Chenxi Dai, Jingjing Tong, Wenting Lei

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069257 - 27 December 2025

    Abstract Ensuring reliable power supply in urban distribution networks is a complex and critical task. To address the increased demand during extreme scenarios, this paper proposes an optimal dispatch strategy that considers the coordination with virtual power plants (VPPs). The proposed strategy improves system flexibility and responsiveness by optimizing the power adjustment of flexible resources. In the proposed strategy, the Gaussian Process Regression (GPR) is firstly employed to determine the adjustable range of aggregated power within the VPP, facilitating an assessment of its potential contribution to power supply support. Then, an optimal dispatch model based on More > Graphic Abstract

    Optimal Dispatch of Urban Distribution Networks Considering Virtual Power Plant Coordination under Extreme Scenarios

  • Open Access

    REVIEW

    From Identification to Obfuscation: A Survey of Cross-Network Mapping and Anti-Mapping Methods

    Shaojie Min1, Yaxiao Luo1, Kebing Liu1, Qingyuan Gong2, Yang Chen1,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.073175 - 09 December 2025

    Abstract User identity linkage (UIL) across online social networks seeks to match accounts belonging to the same real-world individual. This cross-platform mapping enables accurate user modeling but also raises serious privacy risks. Over the past decade, the research community has developed a wide range of UIL methods, from structural embeddings to multimodal fusion architectures. However, corresponding adversarial and defensive approaches remain fragmented and comparatively understudied. In this survey, we provide a unified overview of both mapping and anti-mapping methods for UIL. We categorize representative mapping models by learning paradigm and data modality, and systematically compare them… More >

  • Open Access

    ARTICLE

    Multi-CNN Fusion Framework for Predictive Violence Detection in Animated Media

    Tahira Khalil1, Sadeeq Jan2,*, Rania M. Ghoniem3, Muhammad Imran Khan Khalil1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.072655 - 09 December 2025

    Abstract The contemporary era is characterized by rapid technological advancements, particularly in the fields of communication and multimedia. Digital media has significantly influenced the daily lives of individuals of all ages. One of the emerging domains in digital media is the creation of cartoons and animated videos. The accessibility of the internet has led to a surge in the consumption of cartoons among young children, presenting challenges in monitoring and controlling the content they view. The prevalence of cartoon videos containing potentially violent scenes has raised concerns regarding their impact, especially on young and impressionable minds.… More >

  • Open Access

    ARTICLE

    State Space Guided Spatio-Temporal Network for Efficient Long-Term Traffic Prediction

    Guangyu Huo, Chang Su, Xiaoyu Zhang*, Xiaohui Cui, Lizhong Zhang

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.072147 - 09 December 2025

    Abstract Long-term traffic flow prediction is a crucial component of intelligent transportation systems within intelligent networks, requiring predictive models that balance accuracy with low-latency and lightweight computation to optimize traffic management and enhance urban mobility and sustainability. However, traditional predictive models struggle to capture long-term temporal dependencies and are computationally intensive, limiting their practicality in real-time. Moreover, many approaches overlook the periodic characteristics inherent in traffic data, further impacting performance. To address these challenges, we introduce ST-MambaGCN, a State-Space-Based Spatio-Temporal Graph Convolution Network. Unlike conventional models, ST-MambaGCN replaces the temporal attention layer with Mamba, a state-space More >

  • Open Access

    ARTICLE

    FD-YOLO: An Attention-Augmented Lightweight Network for Real-Time Industrial Fabric Defect Detection

    Shaobo Kang, Mingzhi Yang*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071488 - 09 December 2025

    Abstract Fabric defect detection plays a vital role in ensuring textile quality. However, traditional manual inspection methods are often inefficient and inaccurate. To overcome these limitations, we propose FD-YOLO, an enhanced lightweight detection model based on the YOLOv11n framework. The proposed model introduces the Bi-level Routing Attention (BRAttention) mechanism to enhance defect feature extraction, enabling more detailed feature representation. It proposes Deep Progressive Cross-Scale Fusion Neck (DPCSFNeck) to better capture small-scale defects and incorporates a Multi-Scale Dilated Residual (MSDR) module to strengthen multi-scale feature representation. Furthermore, a Shared Detail-Enhanced Lightweight Head (SDELHead) is employed to reduce More >

  • Open Access

    ARTICLE

    BAID: A Lightweight Super-Resolution Network with Binary Attention-Guided Frequency-Aware Information Distillation

    Jiajia Liu1,*, Junyi Lin2, Wenxiang Dong2, Xuan Zhao2, Jianhua Liu2, Huiru Li3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.071397 - 09 December 2025

    Abstract Single Image Super-Resolution (SISR) seeks to reconstruct high-resolution (HR) images from low-resolution (LR) inputs, thereby enhancing visual fidelity and the perception of fine details. While Transformer-based models—such as SwinIR, Restormer, and HAT—have recently achieved impressive results in super-resolution tasks by capturing global contextual information, these methods often suffer from substantial computational and memory overhead, which limits their deployment on resource-constrained edge devices. To address these challenges, we propose a novel lightweight super-resolution network, termed Binary Attention-Guided Information Distillation (BAID), which integrates frequency-aware modeling with a binary attention mechanism to significantly reduce computational complexity and parameter… More >

Displaying 1-10 on page 1 of 3663. Per Page