Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (341)
  • Open Access

    ARTICLE

    Soil NOx Emission Prediction via Recurrent Neural Networks

    Zhaoan Wang1, Shaoping Xiao1,*, Cheryl Reuben2, Qiyu Wang2, Jun Wang2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 285-297, 2023, DOI:10.32604/cmc.2023.044366

    Abstract This paper presents designing sequence-to-sequence recurrent neural network (RNN) architectures for a novel study to predict soil NOx emissions, driven by the imperative of understanding and mitigating environmental impact. The study utilizes data collected by the Environmental Protection Agency (EPA) to develop two distinct RNN predictive models: one built upon the long-short term memory (LSTM) and the other utilizing the gated recurrent unit (GRU). These models are fed with a combination of historical and anticipated air temperature, air moisture, and NOx emissions as inputs to forecast future NOx emissions. Both LSTM and GRU models can capture the intricate pulse patterns… More >

  • Open Access

    REVIEW

    Action Recognition and Detection Based on Deep Learning: A Comprehensive Summary

    Yong Li1,4, Qiming Liang2,*, Bo Gan3, Xiaolong Cui4

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1-23, 2023, DOI:10.32604/cmc.2023.042494

    Abstract Action recognition and detection is an important research topic in computer vision, which can be divided into action recognition and action detection. At present, the distinction between action recognition and action detection is not clear, and the relevant reviews are not comprehensive. Thus, this paper summarized the action recognition and detection methods and datasets based on deep learning to accurately present the research status in this field. Firstly, according to the way that temporal and spatial features are extracted from the model, the commonly used models of action recognition are divided into the two stream models, the temporal models, the… More >

  • Open Access

    ARTICLE

    Liver Tumor Prediction with Advanced Attention Mechanisms Integrated into a Depth-Based Variant Search Algorithm

    P. Kalaiselvi1,*, S. Anusuya2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1209-1226, 2023, DOI:10.32604/cmc.2023.040264

    Abstract In recent days, Deep Learning (DL) techniques have become an emerging transformation in the field of machine learning, artificial intelligence, computer vision, and so on. Subsequently, researchers and industries have been highly endorsed in the medical field, predicting and controlling diverse diseases at specific intervals. Liver tumor prediction is a vital chore in analyzing and treating liver diseases. This paper proposes a novel approach for predicting liver tumors using Convolutional Neural Networks (CNN) and a depth-based variant search algorithm with advanced attention mechanisms (CNN-DS-AM). The proposed work aims to improve accuracy and robustness in diagnosing and treating liver diseases. The… More >

  • Open Access

    ARTICLE

    A Double-Branch Xception Architecture for Acute Hemorrhage Detection and Subtype Classification

    Muhammad Naeem Akram1, Muhammad Usman Yaseen1, Muhammad Waqar1, Muhammad Imran1,*, Aftab Hussain2

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3727-3744, 2023, DOI:10.32604/cmc.2023.041855

    Abstract This study presents a deep learning model for efficient intracranial hemorrhage (ICH) detection and subtype classification on non-contrast head computed tomography (CT) images. ICH refers to bleeding in the skull, leading to the most critical life-threatening health condition requiring rapid and accurate diagnosis. It is classified as intra-axial hemorrhage (intraventricular, intraparenchymal) and extra-axial hemorrhage (subdural, epidural, subarachnoid) based on the bleeding location inside the skull. Many computer-aided diagnoses (CAD)-based schemes have been proposed for ICH detection and classification at both slice and scan levels. However, these approaches perform only binary classification and suffer from a large number of parameters, which… More >

  • Open Access

    ARTICLE

    An Intelligent Secure Adversarial Examples Detection Scheme in Heterogeneous Complex Environments

    Weizheng Wang1,3, Xiangqi Wang2,*, Xianmin Pan1, Xingxing Gong3, Jian Liang3, Pradip Kumar Sharma4, Osama Alfarraj5, Wael Said6

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3859-3876, 2023, DOI:10.32604/cmc.2023.041346

    Abstract Image-denoising techniques are widely used to defend against Adversarial Examples (AEs). However, denoising alone cannot completely eliminate adversarial perturbations. The remaining perturbations tend to amplify as they propagate through deeper layers of the network, leading to misclassifications. Moreover, image denoising compromises the classification accuracy of original examples. To address these challenges in AE defense through image denoising, this paper proposes a novel AE detection technique. The proposed technique combines multiple traditional image-denoising algorithms and Convolutional Neural Network (CNN) network structures. The used detector model integrates the classification results of different models as the input to the detector and calculates the… More >

  • Open Access

    ARTICLE

    Text Extraction with Optimal Bi-LSTM

    Bahera H. Nayef1,*, Siti Norul Huda Sheikh Abdullah2, Rossilawati Sulaiman2, Ashwaq Mukred Saeed3

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3549-3567, 2023, DOI:10.32604/cmc.2023.039528

    Abstract Text extraction from images using the traditional techniques of image collecting, and pattern recognition using machine learning consume time due to the amount of extracted features from the images. Deep Neural Networks introduce effective solutions to extract text features from images using a few techniques and the ability to train large datasets of images with significant results. This study proposes using Dual Maxpooling and concatenating convolution Neural Networks (CNN) layers with the activation functions Relu and the Optimized Leaky Relu (OLRelu). The proposed method works by dividing the word image into slices that contain characters. Then pass them to deep… More >

  • Open Access

    ARTICLE

    Improved Shark Smell Optimization Algorithm for Human Action Recognition

    Inzamam Mashood Nasir1,*, Mudassar Raza1, Jamal Hussain Shah1, Muhammad Attique Khan2, Yun-Cheol Nam3, Yunyoung Nam4,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2667-2684, 2023, DOI:10.32604/cmc.2023.035214

    Abstract Human Action Recognition (HAR) in uncontrolled environments targets to recognition of different actions from a video. An effective HAR model can be employed for an application like human-computer interaction, health care, person tracking, and video surveillance. Machine Learning (ML) approaches, specifically, Convolutional Neural Network (CNN) models had been widely used and achieved impressive results through feature fusion. The accuracy and effectiveness of these models continue to be the biggest challenge in this field. In this article, a novel feature optimization algorithm, called improved Shark Smell Optimization (iSSO) is proposed to reduce the redundancy of extracted features. This proposed technique is… More >

  • Open Access

    ARTICLE

    Activation Redistribution Based Hybrid Asymmetric Quantization Method of Neural Networks

    Lu Wei, Zhong Ma*, Chaojie Yang

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 981-1000, 2024, DOI:10.32604/cmes.2023.027085

    Abstract The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing. Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices. In order to reduce the complexity and overhead of deploying neural networks on Integer-only hardware, most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network. However, although symmetric quantization has the advantage of easier implementation, it is sub-optimal for cases where the range could be skewed and not symmetric. This often comes at the cost of lower accuracy. This… More > Graphic Abstract

    Activation Redistribution Based Hybrid Asymmetric Quantization Method of Neural Networks

  • Open Access

    ARTICLE

    Predicting Reliability and Remaining Useful Life of Rolling Bearings Based on Optimized Neural Networks

    Tiantian Liang*, Runze Wang, Xuxiu Zhang, Yingdong Wang, Jianxiong Yang

    Structural Durability & Health Monitoring, Vol.17, No.5, pp. 433-455, 2023, DOI:10.32604/sdhm.2023.029331

    Abstract In this study, an optimized long short-term memory (LSTM) network is proposed to predict the reliability and remaining useful life (RUL) of rolling bearings based on an improved whale-optimized algorithm (IWOA). The multi-domain features are extracted to construct the feature dataset because the single-domain features are difficult to characterize the performance degeneration of the rolling bearing. To provide covariates for reliability assessment, a kernel principal component analysis is used to reduce the dimensionality of the features. A Weibull distribution proportional hazard model (WPHM) is used for the reliability assessment of rolling bearing, and a beluga whale optimization (BWO) algorithm is… More > Graphic Abstract

    Predicting Reliability and Remaining Useful Life of Rolling Bearings Based on Optimized Neural Networks

  • Open Access

    EDITORIAL

    Grad-CAM: Understanding AI Models

    Shuihua Wang1,2, Yudong Zhang2,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1321-1324, 2023, DOI:10.32604/cmc.2023.041419

    Abstract This article has no abstract. More >

Displaying 41-50 on page 5 of 341. Per Page