Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (470)
  • Open Access

    ARTICLE

    Artificial Neural Network Model for Thermal Conductivity Estimation of Metal Oxide Water-Based Nanofluids

    Nikhil S. Mane1, Sheetal Kumar Dewangan2,*, Sayantan Mukherjee3, Pradnyavati Mane4, Deepak Kumar Singh1, Ravindra Singh Saluja5

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.072090 - 10 November 2025

    Abstract The thermal conductivity of nanofluids is an important property that influences the heat transfer capabilities of nanofluids. Researchers rely on experimental investigations to explore nanofluid properties, as it is a necessary step before their practical application. As these investigations are time and resource-consuming undertakings, an effective prediction model can significantly improve the efficiency of research operations. In this work, an Artificial Neural Network (ANN) model is developed to predict the thermal conductivity of metal oxide water-based nanofluid. For this, a comprehensive set of 691 data points was collected from the literature. This dataset is split More >

  • Open Access

    ARTICLE

    A Novel Unsupervised Structural Attack and Defense for Graph Classification

    Yadong Wang1, Zhiwei Zhang1,*, Pengpeng Qiao2, Ye Yuan1, Guoren Wang1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-22, 2026, DOI:10.32604/cmc.2025.068590 - 10 November 2025

    Abstract Graph Neural Networks (GNNs) have proven highly effective for graph classification across diverse fields such as social networks, bioinformatics, and finance, due to their capability to learn complex graph structures. However, despite their success, GNNs remain vulnerable to adversarial attacks that can significantly degrade their classification accuracy. Existing adversarial attack strategies primarily rely on label information to guide the attacks, which limits their applicability in scenarios where such information is scarce or unavailable. This paper introduces an innovative unsupervised attack method for graph classification, which operates without relying on label information, thereby enhancing its applicability… More >

  • Open Access

    ARTICLE

    DeepNeck: Bottleneck Assisted Customized Deep Convolutional Neural Networks for Diagnosing Gastrointestinal Tract Disease

    Sidra Naseem1, Rashid Jahangir1,*, Nazik Alturki2, Faheem Shehzad3, Muhammad Sami Ullah4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2481-2501, 2025, DOI:10.32604/cmes.2025.072575 - 26 November 2025

    Abstract Diagnosing gastrointestinal tract diseases is a critical task requiring accurate and efficient methodologies. While deep learning models have significantly advanced medical image analysis, challenges such as imbalanced datasets and redundant features persist. This study proposes a novel framework that customizes two deep learning models, NasNetMobile and ResNet50, by incorporating bottleneck architectures, named as NasNeck and ResNeck, to enhance feature extraction. The feature vectors are fused into a combined vector, which is further optimized using an improved Whale Optimization Algorithm to minimize redundancy and improve discriminative power. The optimized feature vector is then classified using artificial… More >

  • Open Access

    ARTICLE

    Predicting Concrete Strength Using Data Augmentation Coupled with Multiple Optimizers in Feedforward Neural Networks

    Sandeerah Choudhary1, Qaisar Abbas2, Tallha Akram3,*, Irshad Qureshi4, Mutlaq B. Aldajani2, Hammad Salahuddin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1755-1787, 2025, DOI:10.32604/cmes.2025.072200 - 26 November 2025

    Abstract The increasing demand for sustainable construction practices has led to growing interest in recycled aggregate concrete (RAC) as an eco-friendly alternative to conventional concrete. However, predicting its compressive strength remains a challenge due to the variability in recycled materials and mix design parameters. This study presents a robust machine learning framework for predicting the compressive strength of recycled aggregate concrete using feedforward neural networks (FFNN), Random Forest (RF), and XGBoost. A literature-derived dataset of 502 samples was enriched via interpolation-based data augmentation and modeled using five distinct optimization techniques within MATLAB’s Neural Net Fitting module:… More >

  • Open Access

    ARTICLE

    Spectrotemporal Deep Learning for Heart Sound Classification under Clinical Noise Conditions

    Akbare Yaqub1,2, Muhammad Sadiq Orakzai2, Muhammad Farrukh Qureshi3,4, Zohaib Mushtaq5, Imran Siddique6,7, Taha Radwan8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2503-2533, 2025, DOI:10.32604/cmes.2025.071571 - 26 November 2025

    Abstract Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, necessitating efficient diagnostic tools. This study develops and validates a deep learning framework for phonocardiogram (PCG) classification, focusing on model generalizability and robustness. Initially, a ResNet-18 model was trained on the PhysioNet 2016 dataset, achieving high accuracy. To assess real-world viability, we conducted extensive external validation on the HLS-CMDS dataset. We performed four key experiments: (1) Fine-tuning the PhysioNet-trained model for binary (Normal/Abnormal) classification on HLS-CMDS, achieving 88% accuracy. (2) Fine-tuning the same model for multi-class classification (Normal, Murmur, Extra Sound, Rhythm Disorder), which yielded… More >

  • Open Access

    REVIEW

    Deep Learning in Medical Image Analysis: A Comprehensive Review of Algorithms, Trends, Applications, and Challenges

    Dawa Chyophel Lepcha1,*, Bhawna Goyal2,3, Ayush Dogra4, Ahmed Alkhayyat5, Prabhat Kumar Sahu6, Aaliya Ali7, Vinay Kukreja4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1487-1573, 2025, DOI:10.32604/cmes.2025.070964 - 26 November 2025

    Abstract Medical image analysis has become a cornerstone of modern healthcare, driven by the exponential growth of data from imaging modalities such as MRI, CT, PET, ultrasound, and X-ray. Traditional machine learning methods have made early contributions; however, recent advancements in deep learning (DL) have revolutionized the field, offering state-of-the-art performance in image classification, segmentation, detection, fusion, registration, and enhancement. This comprehensive review presents an in-depth analysis of deep learning methodologies applied across medical image analysis tasks, highlighting both foundational models and recent innovations. The article begins by introducing conventional techniques and their limitations, setting the… More >

  • Open Access

    ARTICLE

    Graph Neural Network-Assisted Lion Swarm Optimization for Traffic Congestion Prediction in Intelligent Urban Mobility Systems

    Meshari D. Alanazi1, Gehan Elsayed2,*, Turki M. Alanazi3, Anis Sahbani4, Amr Yousef5,6

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2277-2309, 2025, DOI:10.32604/cmes.2025.070726 - 26 November 2025

    Abstract Traffic congestion plays a significant role in intelligent transportation systems (ITS) due to rapid urbanization and increased vehicle concentration. The congestion is dependent on multiple factors, such as limited road occupancy and vehicle density. Therefore, the transportation system requires an effective prediction model to reduce congestion issues in a dynamic environment. Conventional prediction systems face difficulties in identifying highly congested areas, which leads to reduced prediction accuracy. The problem is addressed by integrating Graph Neural Networks (GNN) with the Lion Swarm Optimization (LSO) framework to tackle the congestion prediction problem. Initially, the traffic information is… More >

  • Open Access

    ARTICLE

    Advancing Radiological Dermatology with an Optimized Ensemble Deep Learning Model for Skin Lesion Classification

    Adeel Akram1, Tallha Akram2, Ghada Atteia3,*, Ayman Qahmash4, Sultan Alanazi5, Faisal Mohammad Alotaibi5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2311-2337, 2025, DOI:10.32604/cmes.2025.069697 - 26 November 2025

    Abstract Advancements in radiation-based imaging and computational intelligence have significantly improved medical diagnostics, particularly in dermatology. This study presents an ensemble-based skin lesion classification framework that integrates deep neural networks (DNNs) with transfer learning, a customized DNN, and an optimized self-learning binary differential evolution (SLBDE) algorithm for feature selection and fusion. Leveraging computational techniques alongside medical imaging modalities, the proposed framework extracts and fuses discriminative features from multiple pre-trained models to improve classification robustness. The methodology is evaluated on benchmark datasets, including ISIC 2017 and the Argentina Skin Lesion dataset, demonstrating superior accuracy, precision, and F1-score… More >

  • Open Access

    REVIEW

    Review of the Mechanical Performance Prediction of Concrete Based on Artificial Neural Networks

    Yidong Xu1, Weijie Zhuge1,2, Jialei Wang1, Xiaopeng Yu3,*, Kan Wu4

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1507-1527, 2025, DOI:10.32604/sdhm.2025.069021 - 17 November 2025

    Abstract The performance of concrete can be affected by many factors, including the material composition, environmental conditions, and construction methods, and it is challenging to predict the performance evolution accurately. The rise of artificial intelligence provides a way to meet the above challenges. This article elaborates on research overview of artificial neural network (ANN) and its prediction for concrete strength, deformation, and durability. The focus is on the comparative analysis of the prediction accuracy for different types of neural networks. Numerous studies have shown that the prediction accuracy of ANN can meet the standards of the More >

  • Open Access

    ARTICLE

    Deep Learning Model for Identifying Internal Flaws Based on Image Quadtree SBFEM and Deep Neural Networks

    Hanyu Tao1,2, Dongye Sun1,2, Tao Fang1,2, Wenhu Zhao1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 521-536, 2025, DOI:10.32604/cmes.2025.072089 - 30 October 2025

    Abstract Structural internal flaws often weaken the performance and integral stability, while traditional nondestructive testing or inversion methods face challenges of high cost and low efficiency in quantitative flaw identification. To quickly identify internal flaws within structures, a deep learning model for flaw detection is proposed based on the image quadtree scaled boundary finite element method (SBFEM) combined with a deep neural network (DNN). The training dataset is generated from the numerical simulations using the balanced quadtree algorithm and SBFEM, where the structural domain is discretized based on recursive decomposition principles and mesh refinement is automatically… More >

Displaying 1-10 on page 1 of 470. Per Page