Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (385)
  • Open Access

    ARTICLE

    Deep Learning Empowered Diagnosis of Diabetic Retinopathy

    Mustafa Youldash1, Atta Rahman2,*, Manar Alsayed1, Abrar Sebiany1, Joury Alzayat1, Noor Aljishi1, Ghaida Alshammari1, Mona Alqahtani1

    Intelligent Automation & Soft Computing, Vol.40, pp. 125-143, 2025, DOI:10.32604/iasc.2025.058509 - 23 January 2025

    Abstract Diabetic retinopathy (DR) is a complication of diabetes that can lead to reduced vision or even blindness if left untreated. Therefore, early and accurate detection of this disease is crucial for diabetic patients to prevent vision loss. This study aims to develop a deep-learning approach for the early and precise diagnosis of DR, as manual detection can be time-consuming, costly, and prone to human error. The classification task is divided into two groups for binary classification: patients with DR (diagnoses 1–4) and those without DR (diagnosis 0). For multi-class classification, the categories are no DR,… More >

  • Open Access

    ARTICLE

    Steel Surface Defect Detection Using Learnable Memory Vision Transformer

    Syed Tasnimul Karim Ayon1,#, Farhan Md. Siraj1,#, Jia Uddin2,*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 499-520, 2025, DOI:10.32604/cmc.2025.058361 - 03 January 2025

    Abstract This study investigates the application of Learnable Memory Vision Transformers (LMViT) for detecting metal surface flaws, comparing their performance with traditional CNNs, specifically ResNet18 and ResNet50, as well as other transformer-based models including Token to Token ViT, ViT without memory, and Parallel ViT. Leveraging a widely-used steel surface defect dataset, the research applies data augmentation and t-distributed stochastic neighbor embedding (t-SNE) to enhance feature extraction and understanding. These techniques mitigated overfitting, stabilized training, and improved generalization capabilities. The LMViT model achieved a test accuracy of 97.22%, significantly outperforming ResNet18 (88.89%) and ResNet50 (88.90%), as well… More >

  • Open Access

    ARTICLE

    DIGNN-A: Real-Time Network Intrusion Detection with Integrated Neural Networks Based on Dynamic Graph

    Jizhao Liu, Minghao Guo*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 817-842, 2025, DOI:10.32604/cmc.2024.057660 - 03 January 2025

    Abstract The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats. Intrusion detection systems are crucial to network security, playing a pivotal role in safeguarding networks from potential threats. However, in the context of an evolving landscape of sophisticated and elusive attacks, existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts. To address these issues, this paper proposes a real-time network intrusion detection method based on… More >

  • Open Access

    ARTICLE

    Unmasking Social Robots’ Camouflage: A GNN-Random Forest Framework for Enhanced Detection

    Weijian Fan1,*, Chunhua Wang2, Xiao Han3, Chichen Lin4

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 467-483, 2025, DOI:10.32604/cmc.2024.056930 - 03 January 2025

    Abstract The proliferation of robot accounts on social media platforms has posed a significant negative impact, necessitating robust measures to counter network anomalies and safeguard content integrity. Social robot detection has emerged as a pivotal yet intricate task, aimed at mitigating the dissemination of misleading information. While graph-based approaches have attained remarkable performance in this realm, they grapple with a fundamental limitation: the homogeneity assumption in graph convolution allows social robots to stealthily evade detection by mingling with genuine human profiles. To unravel this challenge and thwart the camouflage tactics, this work proposed an innovative social… More >

  • Open Access

    ARTICLE

    Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok: An Application of a Continuous Convolutional Neural Network

    Pongsakon Promsawat1, Weerapan Sae-dan2,*, Marisa Kaewsuwan3, Weerawat Sudsutad3, Aphirak Aphithana3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 579-607, 2025, DOI:10.32604/cmes.2024.057774 - 17 December 2024

    Abstract The ability to accurately predict urban traffic flows is crucial for optimising city operations. Consequently, various methods for forecasting urban traffic have been developed, focusing on analysing historical data to understand complex mobility patterns. Deep learning techniques, such as graph neural networks (GNNs), are popular for their ability to capture spatio-temporal dependencies. However, these models often become overly complex due to the large number of hyper-parameters involved. In this study, we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks (DMST-GNODE), a framework based on ordinary differential equations (ODEs) that autonomously discovers effective spatial-temporal… More >

  • Open Access

    ARTICLE

    A Novel Model for Describing Rail Weld Irregularities and Predicting Wheel-Rail Forces Using a Machine Learning Approach

    Linlin Sun1,2, Zihui Wang3, Shukun Cui1,2, Ziquan Yan1,2,*, Weiping Hu3, Qingchun Meng3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 555-577, 2025, DOI:10.32604/cmes.2024.056023 - 17 December 2024

    Abstract Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways. They can cause significant wheel-rail dynamic interactions, leading to wheel-rail noise, component damage, and deterioration. Few researchers have employed the vehicle-track interaction dynamic model to study the dynamic interactions between wheel and rail induced by rail weld geometry irregularities. However, the cosine wave model used to simulate rail weld irregularities mainly focuses on the maximum value and neglects the geometric shape. In this study, novel theoretical models were developed for three categories of rail weld irregularities, based… More >

  • Open Access

    ARTICLE

    Machine Learning Techniques in Predicting Hot Deformation Behavior of Metallic Materials

    Petr Opěla1,*, Josef Walek1,*, Jaromír Kopeček2

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 713-732, 2025, DOI:10.32604/cmes.2024.055219 - 17 December 2024

    Abstract In engineering practice, it is often necessary to determine functional relationships between dependent and independent variables. These relationships can be highly nonlinear, and classical regression approaches cannot always provide sufficiently reliable solutions. Nevertheless, Machine Learning (ML) techniques, which offer advanced regression tools to address complicated engineering issues, have been developed and widely explored. This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials. The ML-based regression methods of Artificial Neural Networks (ANNs), Support Vector Machine (SVM), Decision Tree Regression (DTR), and Gaussian Process Regression More >

  • Open Access

    PROCEEDINGS

    Physics Informed Neural Networks (PINNs) for Multi-Step Loading in Hyperelasticity

    Ajay Dulichand Borkar1, Dipjyoti Nath1, Sachin Singh Gautam1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011404

    Abstract In recent years, machine learning (ML) has emerged as a powerful tool for addressing complex problems in the realms of science and engineering. However, the effectiveness of many state-of-the-art ML techniques is hindered by the limited availability of adequate data, leading to issues of robustness and convergence. Consequently, inferences drawn from such models are often based on partial information. In a seminal contribution, Raissi et al. [1] introduced the concept of physics informed neural networks (PINNs), presenting a novel paradigm in the domain of function approximation by artificial neural networks (ANNs). This advancement marks a… More >

  • Open Access

    ARTICLE

    Research on Grid-Connected Control Strategy of Distributed Generator Based on Improved Linear Active Disturbance Rejection Control

    Xin Mao*, Hongsheng Su, Jingxiu Li

    Energy Engineering, Vol.121, No.12, pp. 3929-3951, 2024, DOI:10.32604/ee.2024.057106 - 22 November 2024

    Abstract The virtual synchronous generator (VSG) technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources. However, the traditional voltage-current double-closed-loop control used in VSG has the disadvantages of poor disturbance immunity and insufficient dynamic response. In light of the issues above, a virtual synchronous generator voltage outer-loop control strategy based on improved linear autonomous disturbance rejection control (ILADRC) is put forth for consideration. Firstly, an improved first-order linear self-immunity control structure is established for the characteristics of the voltage outer loop; then, the… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach for Green Energy Forecasting in Asian Countries

    Tao Yan1, Javed Rashid2,3, Muhammad Shoaib Saleem3,4, Sajjad Ahmad4, Muhammad Faheem5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2685-2708, 2024, DOI:10.32604/cmc.2024.058186 - 18 November 2024

    Abstract Electricity is essential for keeping power networks balanced between supply and demand, especially since it costs a lot to store. The article talks about different deep learning methods that are used to guess how much green energy different Asian countries will produce. The main goal is to make reliable and accurate predictions that can help with the planning of new power plants to meet rising demand. There is a new deep learning model called the Green-electrical Production Ensemble (GP-Ensemble). It combines three types of neural networks: convolutional neural networks (CNNs), gated recurrent units (GRUs), and… More >

Displaying 1-10 on page 1 of 385. Per Page