Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (373)
  • Open Access

    ARTICLE

    A Pooling Method Developed for Use in Convolutional Neural Networks

    İsmail Akgül*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 751-770, 2024, DOI:10.32604/cmes.2024.052549 - 20 August 2024

    Abstract In convolutional neural networks, pooling methods are used to reduce both the size of the data and the number of parameters after the convolution of the models. These methods reduce the computational amount of convolutional neural networks, making the neural network more efficient. Maximum pooling, average pooling, and minimum pooling methods are generally used in convolutional neural networks. However, these pooling methods are not suitable for all datasets used in neural network applications. In this study, a new pooling approach to the literature is proposed to increase the efficiency and success rates of convolutional neural… More >

  • Open Access

    ARTICLE

    Enhancing Communication Accessibility: UrSL-CNN Approach to Urdu Sign Language Translation for Hearing-Impaired Individuals

    Khushal Das1, Fazeel Abid2, Jawad Rasheed3,4,*, Kamlish5, Tunc Asuroglu6,*, Shtwai Alsubai7, Safeeullah Soomro8

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 689-711, 2024, DOI:10.32604/cmes.2024.051335 - 20 August 2024

    Abstract Deaf people or people facing hearing issues can communicate using sign language (SL), a visual language. Many works based on rich source language have been proposed; however, the work using poor resource language is still lacking. Unlike other SLs, the visuals of the Urdu Language are different. This study presents a novel approach to translating Urdu sign language (UrSL) using the UrSL-CNN model, a convolutional neural network (CNN) architecture specifically designed for this purpose. Unlike existing works that primarily focus on languages with rich resources, this study addresses the challenge of translating a sign language… More >

  • Open Access

    ARTICLE

    Enhanced Topic-Aware Summarization Using Statistical Graph Neural Networks

    Ayesha Khaliq1, Salman Afsar Awan1, Fahad Ahmad2,*, Muhammad Azam Zia1, Muhammad Zafar Iqbal3

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3221-3242, 2024, DOI:10.32604/cmc.2024.053488 - 15 August 2024

    Abstract The rapid expansion of online content and big data has precipitated an urgent need for efficient summarization techniques to swiftly comprehend vast textual documents without compromising their original integrity. Current approaches in Extractive Text Summarization (ETS) leverage the modeling of inter-sentence relationships, a task of paramount importance in producing coherent summaries. This study introduces an innovative model that integrates Graph Attention Networks (GATs) with Transformer-based Bidirectional Encoder Representations from Transformers (BERT) and Latent Dirichlet Allocation (LDA), further enhanced by Term Frequency-Inverse Document Frequency (TF-IDF) values, to improve sentence selection by capturing comprehensive topical information. Our… More >

  • Open Access

    ARTICLE

    Resilience Augmentation in Unmanned Weapon Systems via Multi-Layer Attention Graph Convolutional Neural Networks

    Kexin Wang*, Yingdong Gou, Dingrui Xue*, Jiancheng Liu, Wanlong Qi, Gang Hou, Bo Li

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2941-2962, 2024, DOI:10.32604/cmc.2024.052893 - 15 August 2024

    Abstract The collective Unmanned Weapon System-of-Systems (UWSOS) network represents a fundamental element in modern warfare, characterized by a diverse array of unmanned combat platforms interconnected through heterogeneous network architectures. Despite its strategic importance, the UWSOS network is highly susceptible to hostile infiltrations, which significantly impede its battlefield recovery capabilities. Existing methods to enhance network resilience predominantly focus on basic graph relationships, neglecting the crucial higher-order dependencies among nodes necessary for capturing multi-hop meta-paths within the UWSOS. To address these limitations, we propose the Enhanced-Resilience Multi-Layer Attention Graph Convolutional Network (E-MAGCN), designed to augment the adaptability of More >

  • Open Access

    REVIEW

    AI-Driven Learning Management Systems: Modern Developments, Challenges and Future Trends during the Age of ChatGPT

    Sameer Qazi1,*, Muhammad Bilal Kadri2, Muhammad Naveed1,*, Bilal A. Khawaja3, Sohaib Zia Khan4, Muhammad Mansoor Alam5,6,7, Mazliham Mohd Su’ud6

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3289-3314, 2024, DOI:10.32604/cmc.2024.048893 - 15 August 2024

    Abstract COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus. The foremost and most prime sector among those affected were schools, colleges, and universities. The education system of entire nations had shifted to online education during this time. Many shortcomings of Learning Management Systems (LMSs) were detected to support education in an online mode that spawned the research in Artificial Intelligence (AI) based tools that are being developed by the research community to improve the effectiveness of LMSs. This paper presents a detailed survey of the different enhancements to LMSs, which… More >

  • Open Access

    ARTICLE

    A GAN-EfficientNet-Based Traceability Method for Malicious Code Variant Families

    Li Li*, Qing Zhang, Youran Kong

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 801-818, 2024, DOI:10.32604/cmc.2024.051916 - 18 July 2024

    Abstract Due to the diversity and unpredictability of changes in malicious code, studying the traceability of variant families remains challenging. In this paper, we propose a GAN-EfficientNetV2-based method for tracing families of malicious code variants. This method leverages the similarity in layouts and textures between images of malicious code variants from the same source and their original family of malicious code images. The method includes a lightweight classifier and a simulator. The classifier utilizes the enhanced EfficientNetV2 to categorize malicious code images and can be easily deployed on mobile, embedded, and other devices. The simulator utilizes… More >

  • Open Access

    ARTICLE

    Optimized Binary Neural Networks for Road Anomaly Detection: A TinyML Approach on Edge Devices

    Amna Khatoon1, Weixing Wang1,*, Asad Ullah2, Limin Li3,*, Mengfei Wang1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 527-546, 2024, DOI:10.32604/cmc.2024.051147 - 18 July 2024

    Abstract Integrating Tiny Machine Learning (TinyML) with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level. Constrained devices efficiently implement a Binary Neural Network (BNN) for road feature extraction, utilizing quantization and compression through a pruning strategy. The modifications resulted in a 28-fold decrease in memory usage and a 25% enhancement in inference speed while only experiencing a 2.5% decrease in accuracy. It showcases its superiority over conventional detection algorithms in different road image scenarios. Although constrained by computer resources and training datasets, our results indicate opportunities for More >

  • Open Access

    ARTICLE

    Contemporary Study for Detection of COVID-19 Using Machine Learning with Explainable AI

    Saad Akbar1,2, Humera Azam1, Sulaiman Sulmi Almutairi3,*, Omar Alqahtani4, Habib Shah4, Aliya Aleryani4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1075-1104, 2024, DOI:10.32604/cmc.2024.050913 - 18 July 2024

    Abstract The prompt spread of COVID-19 has emphasized the necessity for effective and precise diagnostic tools. In this article, a hybrid approach in terms of datasets as well as the methodology by utilizing a previously unexplored dataset obtained from a private hospital for detecting COVID-19, pneumonia, and normal conditions in chest X-ray images (CXIs) is proposed coupled with Explainable Artificial Intelligence (XAI). Our study leverages less preprocessing with pre-trained cutting-edge models like InceptionV3, VGG16, and VGG19 that excel in the task of feature extraction. The methodology is further enhanced by the inclusion of the t-SNE (t-Distributed… More >

  • Open Access

    ARTICLE

    Deep Learning: A Theoretical Framework with Applications in Cyberattack Detection

    Kaveh Heidary*

    Journal on Artificial Intelligence, Vol.6, pp. 153-175, 2024, DOI:10.32604/jai.2024.050563 - 18 July 2024

    Abstract This paper provides a detailed mathematical model governing the operation of feedforward neural networks (FFNN) and derives the backpropagation formulation utilized in the training process. Network protection systems must ensure secure access to the Internet, reliability of network services, consistency of applications, safeguarding of stored information, and data integrity while in transit across networks. The paper reports on the application of neural networks (NN) and deep learning (DL) analytics to the detection of network traffic anomalies, including network intrusions, and the timely prevention and mitigation of cyberattacks. Among the most prevalent cyber threats are R2L,… More >

  • Open Access

    ARTICLE

    Intrusion Detection System for Smart Industrial Environments with Ensemble Feature Selection and Deep Convolutional Neural Networks

    Asad Raza1,*, Shahzad Memon1, Muhammad Ali Nizamani1, Mahmood Hussain Shah2

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 545-566, 2024, DOI:10.32604/iasc.2024.051779 - 11 July 2024

    Abstract Smart Industrial environments use the Industrial Internet of Things (IIoT) for their routine operations and transform their industrial operations with intelligent and driven approaches. However, IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet. Traditional signature-based IDS are effective in detecting known attacks, but they are unable to detect unknown emerging attacks. Therefore, there is the need for an IDS which can learn from data and detect new threats. Ensemble Machine Learning (ML) and individual Deep Learning (DL) based IDS have been developed, and these individual models achieved… More >

Displaying 11-20 on page 2 of 373. Per Page