Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (428)
  • Open Access

    ARTICLE

    Deep Convolution Neural Networks for Image-Based Android Malware Classification

    Amel Ksibi1,*, Mohammed Zakariah2, Latifah Almuqren1, Ala Saleh Alluhaidan1

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4093-4116, 2025, DOI:10.32604/cmc.2025.059615 - 06 March 2025

    Abstract The analysis of Android malware shows that this threat is constantly increasing and is a real threat to mobile devices since traditional approaches, such as signature-based detection, are no longer effective due to the continuously advancing level of sophistication. To resolve this problem, efficient and flexible malware detection tools are needed. This work examines the possibility of employing deep CNNs to detect Android malware by transforming network traffic into image data representations. Moreover, the dataset used in this study is the CIC-AndMal2017, which contains 20,000 instances of network traffic across five distinct malware categories: a.… More >

  • Open Access

    ARTICLE

    From Detection to Explanation: Integrating Temporal and Spatial Features for Rumor Detection and Explaining Results Using LLMs

    Nanjiang Zhong*, Xinchen Jiang, Yuan Yao

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4741-4757, 2025, DOI:10.32604/cmc.2025.059536 - 06 March 2025

    Abstract The proliferation of rumors on social media has caused serious harm to society. Although previous research has attempted to use deep learning methods for rumor detection, they did not simultaneously consider the two key features of temporal and spatial domains. More importantly, these methods struggle to automatically generate convincing explanations for the detection results, which is crucial for preventing the further spread of rumors. To address these limitations, this paper proposes a novel method that integrates both temporal and spatial features while leveraging Large Language Models (LLMs) to automatically generate explanations for the detection results.… More >

  • Open Access

    ARTICLE

    Image Copy-Move Forgery Detection and Localization Method Based on Sequence-to-Sequence Transformer Structure

    Gang Hao, Peng Liang*, Ziyuan Li, Huimin Zhao, Hong Zhang

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5221-5238, 2025, DOI:10.32604/cmc.2025.055739 - 06 March 2025

    Abstract In recent years, the detection of image copy-move forgery (CMFD) has become a critical challenge in verifying the authenticity of digital images, particularly as image manipulation techniques evolve rapidly. While deep convolutional neural networks (DCNNs) have been widely employed for CMFD tasks, they are often hindered by a notable limitation: the progressive reduction in spatial resolution during the encoding process, which leads to the loss of critical image details. These details are essential for the accurate detection and localization of image copy-move forgery. To overcome the limitations of existing methods, this paper proposes a Transformer-based… More >

  • Open Access

    ARTICLE

    SGP-GCN: A Spatial-Geological Perception Graph Convolutional Neural Network for Long-Term Petroleum Production Forecasting

    Xin Liu1,*, Meng Sun1, Bo Lin2, Shibo Gu1

    Energy Engineering, Vol.122, No.3, pp. 1053-1072, 2025, DOI:10.32604/ee.2025.060489 - 07 March 2025

    Abstract Long-term petroleum production forecasting is essential for the effective development and management of oilfields. Due to its ability to extract complex patterns, deep learning has gained popularity for production forecasting. However, existing deep learning models frequently overlook the selective utilization of information from other production wells, resulting in suboptimal performance in long-term production forecasting across multiple wells. To achieve accurate long-term petroleum production forecast, we propose a spatial-geological perception graph convolutional neural network (SGP-GCN) that accounts for the temporal, spatial, and geological dependencies inherent in petroleum production. Utilizing the attention mechanism, the SGP-GCN effectively captures… More >

  • Open Access

    ARTICLE

    Improving Fundus Detection Precision in Diabetic Retinopathy Using Derivative-Based Deep Neural Networks

    Asma Aldrees1, Hong Min2,*, Ashit Kumar Dutta3, Yousef Ibrahim Daradkeh4, Mohd Anjum5

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2487-2511, 2025, DOI:10.32604/cmes.2025.061103 - 03 March 2025

    Abstract Fundoscopic diagnosis involves assessing the proper functioning of the eye’s nerves, blood vessels, retinal health, and the impact of diabetes on the optic nerves. Fundus disorders are a major global health concern, affecting millions of people worldwide due to their widespread occurrence. Fundus photography generates machine-based eye images that assist in diagnosing and treating ocular diseases such as diabetic retinopathy. As a result, accurate fundus detection is essential for early diagnosis and effective treatment, helping to prevent severe complications and improve patient outcomes. To address this need, this article introduces a Derivative Model for Fundus… More >

  • Open Access

    ARTICLE

    Semantic Malware Classification Using Artificial Intelligence Techniques

    Eliel Martins1, Javier Bermejo Higuera2,*, Ricardo Sant’Ana1, Juan Ramón Bermejo Higuera2, Juan Antonio Sicilia Montalvo2, Diego Piedrahita Castillo3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3031-3067, 2025, DOI:10.32604/cmes.2025.061080 - 03 March 2025

    Abstract The growing threat of malware, particularly in the Portable Executable (PE) format, demands more effective methods for detection and classification. Machine learning-based approaches exhibit their potential but often neglect semantic segmentation of malware files that can improve classification performance. This research applies deep learning to malware detection, using Convolutional Neural Network (CNN) architectures adapted to work with semantically extracted data to classify malware into malware families. Starting from the Malconv model, this study introduces modifications to adapt it to multi-classification tasks and improve its performance. It proposes a new innovative method that focuses on byte More >

  • Open Access

    ARTICLE

    ParMamba: A Parallel Architecture Using CNN and Mamba for Brain Tumor Classification

    Gaoshuai Su1,2, Hongyang Li1,*, Huafeng Chen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2527-2545, 2025, DOI:10.32604/cmes.2025.059452 - 03 March 2025

    Abstract Brain tumors, one of the most lethal diseases with low survival rates, require early detection and accurate diagnosis to enable effective treatment planning. While deep learning architectures, particularly Convolutional Neural Networks (CNNs), have shown significant performance improvements over traditional methods, they struggle to capture the subtle pathological variations between different brain tumor types. Recent attention-based models have attempted to address this by focusing on global features, but they come with high computational costs. To address these challenges, this paper introduces a novel parallel architecture, ParMamba, which uniquely integrates Convolutional Attention Patch Embedding (CAPE) and the… More >

  • Open Access

    ARTICLE

    Optimized Convolutional Neural Networks with Multi-Scale Pyramid Feature Integration for Efficient Traffic Light Detection in Intelligent Transportation Systems

    Yahia Said1,2,*, Yahya Alassaf3, Refka Ghodhbani4, Taoufik Saidani4, Olfa Ben Rhaiem5

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3005-3018, 2025, DOI:10.32604/cmc.2025.060928 - 17 February 2025

    Abstract Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportation systems (ITS) and Advanced Driver Assistance Systems (ADAS), the development of efficient and reliable traffic light detection mechanisms is crucial for enhancing road safety and traffic management. This paper presents an optimized convolutional neural network (CNN) framework designed to detect traffic lights in real-time within complex urban environments. Leveraging multi-scale pyramid feature maps, the proposed model addresses key challenges such as the detection of small, occluded, and low-resolution traffic… More >

  • Open Access

    ARTICLE

    TMC-GCN: Encrypted Traffic Mapping Classification Method Based on Graph Convolutional Networks

    Baoquan Liu1,3, Xi Chen2,3, Qingjun Yuan2,3, Degang Li2,3, Chunxiang Gu2,3,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3179-3201, 2025, DOI:10.32604/cmc.2024.059688 - 17 February 2025

    Abstract With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not… More >

  • Open Access

    ARTICLE

    PIAFGNN: Property Inference Attacks against Federated Graph Neural Networks

    Jiewen Liu1, Bing Chen1,2,*, Baolu Xue1, Mengya Guo1, Yuntao Xu1

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1857-1877, 2025, DOI:10.32604/cmc.2024.057814 - 17 February 2025

    Abstract Federated Graph Neural Networks (FedGNNs) have achieved significant success in representation learning for graph data, enabling collaborative training among multiple parties without sharing their raw graph data and solving the data isolation problem faced by centralized GNNs in data-sensitive scenarios. Despite the plethora of prior work on inference attacks against centralized GNNs, the vulnerability of FedGNNs to inference attacks has not yet been widely explored. It is still unclear whether the privacy leakage risks of centralized GNNs will also be introduced in FedGNNs. To bridge this gap, we present PIAFGNN, the first property inference attack… More >

Displaying 31-40 on page 4 of 428. Per Page