Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access

    ARTICLE

    Mechanisms of Pore-Grain Boundary Interactions Influencing Nanoindentation Behavior in Pure Nickel: A Molecular Dynamics Study

    Chen-Xi Hu1, Wu-Gui Jiang1,*, Jin Wang1, Tian-Yu He2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.068655 - 10 November 2025

    Abstract THE mechanical response and deformation mechanisms of pure nickel under nanoindentation were systematically investigated using molecular dynamics (MD) simulations, with a particular focus on the novel interplay between crystallographic orientation, grain boundary (GB) proximity, and pore characteristics (size/location). This study compares single-crystal nickel models along [100], [110], and [111] orientations with equiaxed polycrystalline models containing 0, 1, and 2.5 nm pores in surface and subsurface configurations. Our results reveal that crystallographic anisotropy manifests as a 24.4% higher elastic modulus and 22.2% greater hardness in [111]-oriented single crystals compared to [100]. Pore-GB synergistic effects are found More >

  • Open Access

    ARTICLE

    Investigation of stable dielectric permittivity with superior EMI shielding capabilities of a multifunctional NiFe2O4@MoS2 nanomaterial

    U. Anwara,, M. Rafib, N. A. Noorc, S. Mumtazd,, Hosam O. Elansarye

    Chalcogenide Letters, Vol.22, No.4, pp. 293-311, 2025, DOI:10.15251/CL.2025.224.293

    Abstract This study presents a multifunctional NiFe2O4@MoS2 nanomaterial synthesized by co-precipitation and hydrothermal methods. The highly magnified Field emission scanning electron microscopic (FESEM) images expose an excellent interconnected network of MoS2 petals and NiFe2O4 cores. NiFe2O4@MoS2 nanomaterial's crystalline arrangement and phase purity are explored using X-ray diffraction (XRD) analysis. A comprehensive analysis of the NiFe2O4@MoS2 nanomaterial, focusing on its dynamic electrical properties across a temperature zone of 183 K to 373 K. The temperature-dependent impedance and modulus plots versus frequency reveal insights into the material’s conduction and relaxation. Electrical characteristics verify the contribution of electroactive regions, such as grains… More >

  • Open Access

    REVIEW

    Research Advances in the Application of Non-Nickel-Based Perovskite Materials for Biogas Reforming

    Hao Tan1,2, Zeai Huang1,2,*, Runxian Gong2, Junming Mei2, Kejie Wu2, Tianyu Yan2, Daoquan Zhu2, Zhibin Zhang2, Ruiyang Zhang1,2

    Energy Engineering, Vol.122, No.11, pp. 4331-4347, 2025, DOI:10.32604/ee.2025.070226 - 27 October 2025

    Abstract Under the driving goal of carbon neutrality, biogas reforming technology has garnered significant attention due to its ability to convert greenhouse gases (CH4/CO2) into syngas (H2/CO). Conventional nickel-based catalysts suffer from issues such as carbon deposition, sintering and sulfur poisoning. Non-nickel-based perovskite materials, with their tunable crystal structure, dynamic oxygen vacancy characteristics, and excellent anti-coking/anti-sulfur performance, have emerged as a promising alternative. This review systematically summarizes the design for non-nickel-based perovskite materials, including optimizing lattice oxygen migration ability and active site stability by A/B site doping, defect engineering and heterojunction construction. The enhancing the conversion rate… More > Graphic Abstract

    Research Advances in the Application of Non-Nickel-Based Perovskite Materials for Biogas Reforming

  • Open Access

    ARTICLE

    Machine Learning Based Prediction of Creep Life for Nickel-Based Single Crystal Superalloys

    Lijie Wang1, Xuguang Dong1, Yao Lu1, Xiaoming Du1,*, Jide Liu2

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3787-3803, 2025, DOI:10.32604/cmc.2025.070696 - 23 September 2025

    Abstract The available datasets provided by our previous works on creep life for nickel-based single crystal superalloys were analyzed through supervised machine learning to rank features in terms of their importance for determining creep life. We employed six models, namely Back Propagation Neural Network (BPNN), Gradient Boosting Decision Tree (GBDT), Random Forest (RF), Gaussian Process Regression (GPR), XGBoost, and CatBoost, to predict the creep life. Our investigation showed that the BPNN model with a network structure of “24-7(20)-1” (which consists of 24 input layers, 7 hidden layers, 20 neurons, and 1 output layer) performed better than More >

  • Open Access

    REVIEW

    Advances in Crack Formation Mechanisms, Evaluation Models, and Compositional Strategies for Additively Manufactured Nickel-Based Superalloys

    Huabo Wu1,2, Jialiao Zhou3, Lan Huang1,2,*, Zi Wang1,2,*, Liming Tan1,2, Jin Lv4, Feng Liu1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2675-2709, 2025, DOI:10.32604/cmes.2025.064854 - 30 June 2025

    Abstract Nickel-based superalloys are indispensable for high-temperature engineering applications, yet their additive manufacturing (AM) is plagued by significant cracking defects. This review investigates crack failure mechanisms in AM nickel-based superalloys, emphasizing methodologies to evaluate crack sensitivity and compositional design strategies to mitigate defects. Key crack types—solidification, liquation, solid-state, stress corrosion, fatigue, and creep-fatigue cracks—are analyzed, with focus on formation mechanisms driven by thermal gradients, solute segregation, and microstructural heterogeneities. Evaluation frameworks such as the Rappaz-Drezet-Gremaud (RDG) criterion, Solidification Cracking Index (SCI), and Strain Age Cracking (SAC) index are reviewed for predicting crack susceptibility through integration of… More >

  • Open Access

    REVIEW

    Microbial Strategies for Enhancing Nickel Nanoparticle Detoxification in Plants to Mitigate Heavy Metal Stress

    Hua Zhang, Ganghua Li*

    Phyton-International Journal of Experimental Botany, Vol.94, No.5, pp. 1367-1399, 2025, DOI:10.32604/phyton.2025.064632 - 29 May 2025

    Abstract Soil naturally contains various heavy metals, however, their concentrations have reached toxic levels due to excessive agrochemical use and industrial activities. Heavy metals are persistent and non-biodegradable, causing environmental disruption and posing significant health hazards. Microbial-mediated remediation is a promising strategy to prevent heavy metal leaching and mobilization, facilitating their extraction and detoxification. Nickel (Ni), being a prevalent heavy metal pollutant, requires specific attention in remediation efforts. Plants have evolved defense mechanisms to cope with environmental stresses, including heavy metal toxicity, but such stress significantly reduces crop productivity. Beneficial microorganisms play a crucial role in… More > Graphic Abstract

    Microbial Strategies for Enhancing Nickel Nanoparticle Detoxification in Plants to Mitigate Heavy Metal Stress

  • Open Access

    ARTICLE

    Exogenous Alpha-Ketoglutarate (AKG) Modulate Physiological Characteristics, Photosynthesis, Secondary Metabolism and Antioxidant Defense System in Peganum Harmala L. under Nickel Stress

    Marwa Rezgui1,#,*, Wided Ben Ammar1, Muhammad Nazim2,3,#, Walid Soufan4, Chiraz Chaffei Haouari1

    Phyton-International Journal of Experimental Botany, Vol.94, No.1, pp. 137-155, 2025, DOI:10.32604/phyton.2025.058851 - 24 January 2025

    Abstract Nickel (Ni) toxicity significantly impairs plant growth, photosynthesis, and metabolism by inducing oxidative stress. This study evaluates the potential of exogenous Alpha-Ketoglutarate (AKG) in mitigating Ni-induced stress in Peganum harmala L. Seedlings were exposed to 0, 200, 500, and 750 μM NiCl2, with or without AKG supplementation. Under 750 μM Ni stress, dry weight (DW) decreased by 33.7%, tissue water content (TWC) by 39.9%, and chlorophyll a and total chlorophyll levels were reduced by 17% and 15%, respectively. Ni exposure also significantly increased secondary metabolite production, with leaf anthocyanin content rising by 131%, and superoxide dismutase (SOD)… More >

  • Open Access

    PROCEEDINGS

    The Effect of Fatigue Loading Frequency on the Fatigue Crack Growth Behavior of a Nickel-Based Superalloy: Experimental Investigation and Modelling

    Yi Shi1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012366

    Abstract The Nickel-based superalloy is wieldy applied in hot components of aero turbine engine due to its superior mechanical property at elevated temperature. However, the working condition of engine hot components are severe and thus the effect of high temperature, oxidation and time-dependent loading on fatigue crack growth behavior should be considered in structure analysis. In this study, first the effect of environment was experimentally investigated. Stand compact tension (CT) specimens under different temperatures and loading frequencies were tests to evaluate the role of temperature and time-dependent effect on fatigue crack growth. Results show that if… More >

  • Open Access

    PROCEEDINGS

    A Crystal Plasticity Based Constitutive Model for the Temperature Dependent Anomalous Behaviors of Nickel-Based Single-Crystal Superalloy

    Xueling Fan1,*, Pin Lu1, Xiaochao Jin1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09919

    Abstract Ni-based single crystal superalloys have been favored in the high-temperature service zones of aeroengine and gas turbine due to its excellent mechanical properties at high temperature. It is very significant to construct a constitutive model that can accurately capture the mechanical response of Ni-based single crystals for simulation analysis. In this work, a forest dislocation density-based single crystal plasticity constitutive model was developed to capture the mechanical behavior of Ni-based single crystals, including the temperature dependent anomalous yield and tension/compression asymmetry. Firstly, thermally activated cross-slip mechanism was introduced into the hardening model to describe the… More >

  • Open Access

    ARTICLE

    Quantifying Solid Solution Strengthening in Nickel-Based Superalloys via High-Throughput Experiment and Machine Learning

    Zihang Li1,#, Zexin Wang1,#, Zi Wang2, Zijun Qin1, Feng Liu1, Liming Tan1,*, Xiaochao Jin3,*, Xueling Fan3, Lan Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1521-1538, 2023, DOI:10.32604/cmes.2022.021639 - 27 October 2022

    Abstract Solid solution strengthening (SSS) is one of the main contributions to the desired tensile properties of nickel-based superalloys for turbine blades and disks. The value of SSS can be calculated by using Fleischer’s and Labusch’s theories, while the model parameters are incorporated without fitting to experimental data of complex alloys. In this work, four diffusion multiples consisting of multicomponent alloys and pure Ni are prepared and characterized. The composition and microhardness of single γ phase regions in samples are used to quantify the SSS. Then, Fleischer’s and Labusch’s theories are examined based on high-throughput experiments, More >

Displaying 1-10 on page 1 of 22. Per Page