Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    DUAL SOLUTIONS FOR HEAT AND MASS TRANSFER IN MHD JEFFREY FLUID IN THE PRESENCE OF HOMOGENEOUSHETEROGENEOUS REACTIONS

    C. S. K. Rajua , N. Sandeepa, J. Prakashb,1

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-8, 2016, DOI:10.5098/hmt.7.14

    Abstract In this study, we analyzed the effects of nonlinear thermal radiation and induced magnetic field on steady two-dimensional incompressible flow of Jeffrey fluid flow past a stretching/shrinking surface in the presence of homogeneous-heterogeneous reactions. For physical relevance in this study we analyzed the behavior of homogeneous and heterogeneous profiles individually. The transformed governing equations with the help of similarity variables are solved numerically via Runge-Kutta and Newton’s method. We obtained better accuracy of the present results by differentiating with the existed published literature. The effect of pertinent parameters on velocity, induced magnetic field, temperature and concentration profiles along with the… More >

  • Open Access

    ARTICLE

    EFFECT OF NONLINEAR THERMAL RADIATION ON MAGNETOHYDRODYNAMIC WALL JET FLOW

    M. Sathish Kumar, N. Sandeep* , B. Rushi Kumar

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-6, 2017, DOI:10.5098/hmt.9.10

    Abstract An analysis is presented to analyze the momentum and heat transfer behaviour of the laminar wall jet flow of a hydromagnetic flow due to plate with nonlinear thermal radiation and convective boundary condition. The governing Partial differential equations are converted as ordinary differential equations with the aid of similarity transformation. Further, the transformed equation is resolved using the bvc5c Matlab package. The effect of various pertinent parameters on momentum and temperature fields along with the local Nusselt number is discussed with the help of numerical and graphical illustrations. It is found that the Biotnumbereffectively enhances the heat transfer rate. More >

  • Open Access

    ARTICLE

    NON-LINEAR RADIATIVE FLOW OF NANOFLUID PAST A MOVING/STATIONARY RIGA PLATE

    G.K. Ramesha,*, B.J. Gireeshab

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-7, 2017, DOI:10.5098/hmt.9.3

    Abstract The effect of non-linear thermal radiation on nanofluid flow over a riga plate is studied. Under some conditions, our problem reduces to the Blasius problem and Sakiadis problem. Similarity transformation is used to convert the governing steady Navier-Stokes equations into a system of coupled nonlinear differential equations, which are then solved numerically via Runge-Kutta-Fehlberg 45 order method along with a shooting method. Influence of parameters involved on velocity, temperature and concentration profiles is discussed with the help of graphical aid. Numerical results have been presented on the skin-friction coefficients, local Nusselt number and Sherwood number. It is found that in… More >

  • Open Access

    ARTICLE

    NONLINEAR RADIATIVE HEAT TRANSFER TO CARREAU FLUID OVER A NONLINEAR STRETCHING SHEET IN A POROUS MEDIUM IN THE PRESENCE OF NON-UNIFORM HEAT SOURCE/SINK AND VISCOUS DISSIPATION

    M. Umeshaiah1 , M. R. Krishnamurthy2 , N.G. Rudraswamy3 , B. J. Gireesha4, B.C. Prasannakumara5,*

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.4

    Abstract This article presents the effect of nonlinear thermal radiation on boundary layer flow and heat transfer of Carreau fluid model over a nonlinear stretching sheet embedded in a porous medium in the presence of non-uniform heat source/sink and viscous dissipation with convective boundary condition. The governing partial differential equations with the corresponding boundary conditions are reduced to a set of ordinary differential equations using similarity transformation, which is then solved numerically by the fourth-fifth order Runge–Kutta-Fehlberg integration scheme featuring a shooting technique. The influence of significant parameters such as power law index parameter, Stretching parameter, Weissenberg number, permeability parameter, temperature… More >

  • Open Access

    ARTICLE

    ROLE OF MAXWELL VELOCITY AND SMOLUCHOWSKI TEMPERATURE JUMP SLIP BOUNDARY CONDITIONS TO NON-NEWTONIAN CARREAU FLUID

    T. Sajid , M. Sagheer, S. Hussain

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-12, 2020, DOI:10.5098/hmt.14.28

    Abstract The forthright aim of this correspondence is to examine the conduct of MHD, viscous dissipation and Joule heating on three dimensional nonNewtonian Carreau fluid flow over a linear stretching surface. Impact of non-linear Rosseland thermal radiation and homogenous/heterogenous reaction process have been also considered to examine the heat and mass transfer process during fluid flow. The velocity and thermal slip effect at the surface have also been scrutinized in detail. By utilizing a suitable transformation, the modelled partial differential equations (PDEs) are renovated into ordinary differential equations (ODEs) and furthermore solved with the help of the numerical procedure namely the… More >

  • Open Access

    ARTICLE

    Buoyancy driven Flow of a Second-Grade Nanofluid flow Taking into Account the Arrhenius Activation Energy and Elastic Deformation: Models and Numerical Results

    R. Kalaivanan1, N. Vishnu Ganesh2, Qasem M. Al-Mdallal3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.2, pp. 319-332, 2021, DOI:10.32604/fdmp.2021.012789

    Abstract The buoyancy driven flow of a second-grade nanofluid in the presence of a binary chemical reaction is analyzed in the context of a model based on the balance equations for mass, species concentration, momentum and energy. The elastic properties of the considered fluid are taken into account. The two-dimensional slip flow of such non-Newtonian fluid over a porous flat material which is stretched vertically upwards is considered. The role played by the activation energy is accounted for through an exponent form modified Arrhenius function added to the Buongiorno model for the nanofluid concentration. The effects of thermal radiation are also… More >

Displaying 1-10 on page 1 of 6. Per Page