Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Extraction of Strain Characteristic Signals from Wind Turbine Blades Based on EEMD-WT

    Jin Wang1, Zhen Liu1,*, Ying Wang1, Caifeng Wen2,3, Jianwen Wang2,3

    Energy Engineering, Vol.120, No.5, pp. 1149-1162, 2023, DOI:10.32604/ee.2023.025209

    Abstract Analyzing the strain signal of wind turbine blade is the key to studying the load of wind turbine blade, so as to ensure the safe and stable operation of wind turbine in natural environment. The strain signal of the wind turbine blade under continuous crosswind state has typical non-stationary and unsteady characteristics. The strain signal contains a lot of noise, which makes the analysis error. Therefore, it is very important to denoise and extract features of measured signals before signal analysis. In this paper, the joint algorithm of ensemble empirical mode decomposition (EEMD) and wavelet transform (WT) is used for… More >

  • Open Access

    ARTICLE

    Wind Turbine Drivetrain Expert Fault Detection System: Multivariate Empirical Mode Decomposition based Multi-sensor Fusion with Bayesian Learning Classification

    R. Uma Maheswari1,*, R. Umamaheswari2

    Intelligent Automation & Soft Computing, Vol.26, No.3, pp. 479-488, 2020, DOI:10.32604/iasc.2020.013924

    Abstract To enhance the predictive condition-based maintenance (CBMS), a reliable automatic Drivetrain fault detection technique based on vibration monitoring is proposed. Accelerometer sensors are mounted on a wind turbine drivetrain at different spatial locations to measure the vibration from multiple vibration sources. In this work, multi-channel signals are fused and monocomponent modes of oscillation are reconstructed by the Multivariate Empirical Mode Decomposition (MEMD) Technique. Noise assisted methodology is adapted to palliate the mixing of modes with common frequency scales. The instantaneous amplitude envelope and instantaneous frequency are estimated with the Hilbert transform. Low order and high order statistical moments, signal feature… More >

Displaying 1-10 on page 1 of 2. Per Page