Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    Study on the Relationship between Structural Aspects and Aerodynamic Characteristics of Archimedes Spiral Wind Turbines

    Yuanjun Dai1,2,3,*, Zetao Deng1, Baohua Li2, Lei Zhong1, Jianping Wang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1517-1537, 2024, DOI:10.32604/fdmp.2024.046828

    Abstract A combined experimental and numerical research study is conducted to investigate the complex relationship between the structure and the aerodynamic performances of an Archimedes spiral wind turbine (ASWT). Two ASWTs are considered, a prototypical version and an improved version. It is shown that the latter achieves the best aerodynamic performance when the spread angles at the three sets of blades are α = 30°, α = 55°, α = 60°, respectively and the blade thickness is 4 mm. For a velocity V = 10 m/s, a tip speed ratio (TSR) = 1.58 and 2, the maximum C values More > Graphic Abstract

    Study on the Relationship between Structural Aspects and Aerodynamic Characteristics of Archimedes Spiral Wind Turbines

  • Open Access

    ARTICLE

    Optimal Design of High-Speed Partial Flow Pumps using Orthogonal Tests and Numerical Simulations

    Jiaqiong Wang1,2, Tao Yang1, Chen Hu1, Yu Zhang3,*, Ling Zhou1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1203-1218, 2024, DOI:10.32604/fdmp.2023.045825

    Abstract To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm, special attention was paid to the first and second stage impeller guide vanes. Moreover, the impeller blade outlet width, impeller inlet diameter, blade inclination angle, and number of blades were considered for orthogonal tests. Accordingly, nine groups of design solutions were formed, and then used as a basis for the execution of numerical simulations (CFD) aimed at obtaining the efficiency values and heads for each design solution group. The More >

  • Open Access

    ARTICLE

    A Numerical Study on the Effect of the Backflow Hole Position on the Performances of a Self-Priming Pump

    Dongwei Wang1,*, Lijian Cao1, Weidong Wang2, Jiajun Hu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1103-1122, 2024, DOI:10.32604/fdmp.2023.042654

    Abstract A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance depends on the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigate the effects of three different radial positions of the reflux hole on gas-liquid two-phase distribution, pressure pulsation, and imp during self-priming. The research results indicate that: (1) The effective channel size for the reflux liquid to enter the volute varies depending on the location of the reflux hole. The effect of the impeller rotation on the reflux liquid becomes… More >

  • Open Access

    REVIEW

    Review of Collocation Methods and Applications in Solving Science and Engineering Problems

    Weiwu Jiang1, Xiaowei Gao1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 41-76, 2024, DOI:10.32604/cmes.2024.048313

    Abstract The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations. This paper provides a comprehensive review of collocation methods and their applications, focused on elasticity, heat conduction, electromagnetic field analysis, and fluid dynamics. The merits of the collocation method can be attributed to the need for element mesh, simple implementation, high computational efficiency, and ease in handling irregular domain problems since the collocation method is a type of node-based numerical method. Beginning with the fundamental principles of the collocation method, the discretization process in the continuous… More >

  • Open Access

    ARTICLE

    Numerical Calculation of Transient Thermal Characteristics of Nozzle Flowmeter

    Xin Li1, Shaohan Zheng1,2, Yuliang Zhang1,*, Minfeng Lv3

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 245-264, 2023, DOI:10.32604/fhmt.2023.041778

    Abstract This article aims to reveal the transient thermal characteristics of the solid domain in a nozzle flowmeter when measuring fluids of varying temperatures. Based on finite element method, the transient numerical calculation of the thermal characteristics of each component of the nozzle flowmeter has been conducted. The research shows that: as the fluid passes through the flowmeter, the high heat flux area inside the nozzle flowmeter gradually transfer from the center of the nozzle to the inlet and outlet, as well as the pressure tapping points upstream and downstream; High thermal stress zones are present More >

  • Open Access

    ARTICLE

    NUMERICAL CALCULATION OF REVERSE STARTUP OF A SMALL RADIAL VANE PUMP

    Feng-Lin Zhoua , Kai-Yuan Zhang a, Liang Chengb,† , Hai-Bing Caic, Yu-Liang Zhangb, Min-Feng Lvd

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-10, 2023, DOI:10.5098/hmt.20.22

    Abstract In order to grasp the reverse startup characteristics of a small radial vane pump in the case of misoperation, a circulation piping system that includes the pump is established. Numerical simulation of the full three-dimensional unsteady incompressible viscous flow is performed based on the slip-grid technique and user-defined functions (UDF). According to the results, the static pressure fluctuation is small at the inlet of the centrifugal pump during the reverse startup, which differs significantly from the forward startup. Compared to the impeller rotational speed, the time required for the shaft power, head and flow curves… More >

  • Open Access

    ARTICLE

    HEAT FLOW DISTRIBUTION CHARACTERISTICS OF SOLID WALL OF NOZZLE FLOWMETER

    L.H. Tonga , Y.L. Zhangb,†, T.H. Yua, B.Y. Luoc, J.F. Lib

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-8, 2023, DOI:10.5098/hmt.20.10

    Abstract In order to explore the thermal characteristics of a small nozzle flowmeter in the solid domain when transporting medium with different temperatures, the steady and transient thermal characteristics of each component of the nozzle flowmeter are calculated based on the finite element method. Results showed that the numerical calculation method could effectively reveal the internal thermal characteristics. When transporting high temperature medium, there was an obvious temperature stratification near the inner wall; when the inner wall temperature rose from 50 °C to 700 °C, the heat flow field at the inlet and outlet of the More >

  • Open Access

    ARTICLE

    SELF-COUPLING NUMERICAL CALCULATION OF CENTRIFUGAL PUMP STARTUP PROCESS

    L. Cheng, Y. L. Zhang

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-6, 2022, DOI:10.5098/hmt.18.26

    Abstract To obtain the transient characteristics of a centrifugal pump during a rapid startup process accurately, a circulating piping system, including the pump, is established. A full three-dimensional unsteady incompressible viscous flow of a low-specific speed centrifugal pump during rapid startup is numerically simulated using the finite volume method, RNG k-ε turbulence model, sliding grid technology, dynamic grid technology, and userdefined function. Results show that the effect of dynamic and static interference becomes remarkably evident with the increase in speed in the starting process. The effect of dynamic and static interference makes the flow rate show More >

  • Open Access

    ARTICLE

    A Fast Approach for Predicting Aerodynamic Noise Sources of High-Speed Train Running in Tunnel

    Deng Qin1, Tian Li1,*, Honglin Wang2, Jizhong Yang3, Yao Jiang3, Jiye Zhang1, Haiquan Bi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1371-1386, 2022, DOI:10.32604/cmes.2022.018480

    Abstract The aerodynamic noise of high-speed trains passing through a tunnel has gradually become an important issue. Numerical approaches for predicting the aerodynamic noise sources of high-speed trains running in tunnels are the key to alleviating aerodynamic noise issues. In this paper, two typical numerical methods are used to calculate the aerodynamic noise of high-speed trains. These are the static method combined with non-reflective boundary conditions and the dynamic mesh method combined with adaptive mesh. The fluctuating pressure, flow field and aerodynamic noise source are numerically simulated using the above methods. The results show that the More >

  • Open Access

    ARTICLE

    Influence of the Impeller/Guide Vane Clearance Ratio on the Performances of a Nuclear Reactor Coolant Pump

    Xiaorui Cheng1,2,*, Xiang Liu1, Boru Lv1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.1, pp. 93-107, 2022, DOI:10.32604/fdmp.2022.017566

    Abstract An AP1000 nuclear reactor coolant pump is considered to assess the influence of the Impeller/Guide vane clearance on the performances of this type of pumps. Experiments and numerical simulations relying on an unidirectional fluid-solid coupling approach are used to investigate the problem (stress, strain and mode of the rotor). The results reveal the relationship existing between the hydraulic performance of the nuclear reactor coolant pump and the clearance ratio. The effect of clearance ratio on the maximum equivalent stress on the back surface of the impeller blade is greater than that on the working surface More >

Displaying 1-10 on page 1 of 15. Per Page