Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19)
  • Open Access

    ARTICLE

    A Hybrid SIR-Fuzzy Model for Epidemic Dynamics: A Numerical Study

    Muhammad Shoaib Arif1,2,*, Kamaleldin Abodayeh1, Yasir Nawaz2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3417-3434, 2024, DOI:10.32604/cmes.2024.046944

    Abstract This study focuses on the urgent requirement for improved accuracy in disease modeling by introducing a new computational framework called the Hybrid SIR-Fuzzy Model. By integrating the traditional Susceptible-Infectious-Recovered (SIR) model with fuzzy logic, our method effectively addresses the complex nature of epidemic dynamics by accurately accounting for uncertainties and imprecisions in both data and model parameters. The main aim of this research is to provide a model for disease transmission using fuzzy theory, which can successfully address uncertainty in mathematical modeling. Our main emphasis is on the imprecise transmission rate parameter, utilizing a three-part description of its membership level.… More >

  • Open Access

    ARTICLE

    Construction of a Computational Scheme for the Fuzzy HIV/AIDS Epidemic Model with a Nonlinear Saturated Incidence Rate

    Muhammad Shoaib Arif1,2,*, Kamaleldin Abodayeh1, Yasir Nawaz2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1405-1425, 2024, DOI:10.32604/cmes.2023.028946

    Abstract This work aimed to construct an epidemic model with fuzzy parameters. Since the classical epidemic model does not elaborate on the successful interaction of susceptible and infective people, the constructed fuzzy epidemic model discusses the more detailed versions of the interactions between infective and susceptible people. The next-generation matrix approach is employed to find the reproduction number of a deterministic model. The sensitivity analysis and local stability analysis of the system are also provided. For solving the fuzzy epidemic model, a numerical scheme is constructed which consists of three time levels. The numerical scheme has an advantage over the existing… More >

  • Open Access

    ARTICLE

    An Efficient Numerical Scheme for Biological Models in the Frame of Bernoulli Wavelets

    Fei Li1, Haci Mehmet Baskonus2,*, S. Kumbinarasaiah3, G. Manohara3, Wei Gao4, Esin Ilhan5

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2381-2408, 2023, DOI:10.32604/cmes.2023.028069

    Abstract This article considers three types of biological systems: the dengue fever disease model, the COVID-19 virus model, and the transmission of Tuberculosis model. The new technique of creating the integration matrix for the Bernoulli wavelets is applied. Also, the novel method proposed in this paper is called the Bernoulli wavelet collocation scheme (BWCM). All three models are in the form system of coupled ordinary differential equations without an exact solution. These systems are converted into a system of algebraic equations using the Bernoulli wavelet collocation scheme. The numerical wave distributions of these governing models are obtained by solving the algebraic… More >

  • Open Access

    ARTICLE

    Dynamical Analysis of the Stochastic COVID-19 Model Using Piecewise Differential Equation Technique

    Yu-Ming Chu1, Sobia Sultana2, Saima Rashid3,*, Mohammed Shaaf Alharthi4

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2427-2464, 2023, DOI:10.32604/cmes.2023.028771

    Abstract Various data sets showing the prevalence of numerous viral diseases have demonstrated that the transmission is not truly homogeneous. Two examples are the spread of Spanish flu and COVID-19. The aim of this research is to develop a comprehensive nonlinear stochastic model having six cohorts relying on ordinary differential equations via piecewise fractional differential operators. Firstly, the strength number of the deterministic case is carried out. Then, for the stochastic model, we show that there is a critical number that can predict virus persistence and infection eradication. Because of the peculiarity of this notion, an interesting way… More >

  • Open Access

    ARTICLE

    Efficient Numerical Scheme for Solving Large System of Nonlinear Equations

    Mudassir Shams1, Nasreen Kausar2,*, Shams Forruque Ahmed3, Irfan Anjum Badruddin4, Syed Javed4

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5331-5347, 2023, DOI:10.32604/cmc.2023.033528

    Abstract A fifth-order family of an iterative method for solving systems of nonlinear equations and highly nonlinear boundary value problems has been developed in this paper. Convergence analysis demonstrates that the local order of convergence of the numerical method is five. The computer algebra system CAS-Maple, Mathematica, or MATLAB was the primary tool for dealing with difficult problems since it allows for the handling and manipulation of complex mathematical equations and other mathematical objects. Several numerical examples are provided to demonstrate the properties of the proposed rapidly convergent algorithms. A dynamic evaluation of the presented methods is also presented utilizing basins… More >

  • Open Access

    ARTICLE

    Computational-Analysis of the Non-Isothermal Dynamics of the Gravity-Driven Flow of Viscoelastic-Fluid-Based Nanofluids Down an Inclined Plane

    Idrees Khan1,2, Tiri Chinyoka1,2,*, Andrew Gill3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 767-781, 2023, DOI:10.32604/fdmp.2022.021921

    Abstract The paper explores the gravity-driven flow of the thin film of a viscoelastic-fluid-based nanofluids (VFBN) along an inclined plane under non-isothermal conditions and subjected to convective cooling at the free-surface. The Newton’s law of cooling is used to model the convective heat-exchange with the ambient at the free-surface. The Giesekus viscoelastic constitutive model, with appropriate modifications to account for non-isothermal effects, is employed to describe the polymeric effects. The unsteady and coupled non-linear partial differential equations (PDEs) describing the model problem are obtained and solved via efficient semi-implicit numerical schemes based on finite difference methods (FDM) implemented in Matlab. The… More >

  • Open Access

    ARTICLE

    Stability Analysis of Predator-Prey System with Consuming Resource and Disease in Predator Species

    Asad Ejaz1, Yasir Nawaz1, Muhammad Shoaib Arif1,3,*, Daoud S. Mashat2, Kamaleldin Abodayeh3

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.2, pp. 489-506, 2022, DOI:10.32604/cmes.2022.019440

    Abstract The present study is concerned with formulating a predator-prey eco-epidemiological mathematical model assuming that an infection exists in the predator species. The two classes of predator species (susceptible and infected) compete for the same sources available in the environment with the predation option. It is assumed that the disease does not spread vertically. The proposed model is analyzed for the stability of the coexistence of the predators and prey. The fixed points are carried out, and the coexisting fixed point is studied in detail by constructing the Lyapunov function. The movement of species in search of food or protection in… More >

  • Open Access

    ARTICLE

    Efficient Numerical Scheme for the Solution of HIV Infection CD4+ T-Cells Using Haar Wavelet Technique

    Rohul Amin1, Şuayip Yüzbası2,*, Shah Nazir3

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 639-653, 2022, DOI:10.32604/cmes.2022.019154

    Abstract In this paper, Haar collocation algorithm is developed for the solution of first-order of HIV infection CD4+ T-Cells model. In this technique, the derivative in the nonlinear model is approximated by utilizing Haar functions. The value of the unknown function is obtained by the process of integration. Error estimation is also discussed, which aims to reduce the error of numerical solutions. The numerical results show that the method is simply applicable. The results are compared with Runge-Kutta technique, Bessel collocation technique, LADM-Pade and Galerkin technique available in the literature. The results show that the Haar technique is easy, precise and… More >

  • Open Access

    ARTICLE

    Computer Oriented Numerical Scheme for Solving Engineering Problems

    Mudassir Shams1, Naila Rafiq2, Nasreen Kausar3, Nazir Ahmad Mir2, Ahmad Alalyani4,*

    Computer Systems Science and Engineering, Vol.42, No.2, pp. 689-701, 2022, DOI:10.32604/csse.2022.022269

    Abstract In this study, we construct a family of single root finding method of optimal order four and then generalize this family for estimating of all roots of non-linear equation simultaneously. Convergence analysis proves that the local order of convergence is four in case of single root finding iterative method and six for simultaneous determination of all roots of non-linear equation. Some non-linear equations are taken from physics, chemistry and engineering to present the performance and efficiency of the newly constructed method. Some real world applications are taken from fluid mechanics, i.e., fluid permeability in biogels and biomedical engineering which includes… More >

  • Open Access

    ARTICLE

    On Computer Implementation for Comparison of Inverse Numerical Schemes for Non-Linear Equations

    Mudassir Shams1,*, Naila Rafiq2, Nazir Ahmad Mir1,2, Babar Ahmad3, Saqib Abbasi1, Mutee-Ur-Rehman Kayani1

    Computer Systems Science and Engineering, Vol.36, No.3, pp. 493-507, 2021, DOI:10.32604/csse.2021.014476

    Abstract In this research article, we interrogate two new modifications in inverse Weierstrass iterative method for estimating all roots of non-linear equation simultaneously. These modifications enables us to accelerate the convergence order of inverse Weierstrass method from 2 to 3. Convergence analysis proves that the orders of convergence of the two newly constructed inverse methods are 3. Using computer algebra system Mathematica, we find the lower bound of the convergence order and verify it theoretically. Dynamical planes of the inverse simultaneous methods and classical iterative methods are generated using MATLAB (R2011b), to present the global convergence properties of inverse simultaneous iterative… More >

Displaying 1-10 on page 1 of 19. Per Page