Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (443)
  • Open Access

    ARTICLE

    Effect of Railway Spacing on Aerodynamic Performance of 600 km/h Maglev Trains Passing Each Other

    Bailong Sun1, Tian Li1,*, Deng Qin1, Yan Li2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 371-385, 2025, DOI:10.32604/fdmp.2024.055519 - 06 March 2025

    Abstract High-speed maglev trains (HSMTs) can run at high running speeds due to their unique design. The pressure waves that these trains generate while passing each other are therefore very intense, and can even have safety implications. In order to reduce the transient impact of such waves, the standard k-ε turbulence model is used in this work to assess the effect of railway spacing on the aerodynamic loads, pressure and surrounding flow field of 600 km/h maglev trains passing each other in open air. The sliding mesh technique is used to determine the relative motion between the More >

  • Open Access

    REVIEW

    Progress on Multi-Field Coupling Simulation Methods in Deep Strata Rock Breaking Analysis

    Baoping Zou1,2, Chenhao Pei1,*, Qizhi Chen1,2, Yansheng Deng1,2, Yongguo Chen1,2, Xu Long3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2457-2485, 2025, DOI:10.32604/cmes.2025.061429 - 03 March 2025

    Abstract The utilization of multi-field coupling simulation methods has become a pivotal approach for the investigation of intricate fracture behavior and interaction mechanisms of rock masses in deep strata. The high temperatures, pressures and complex geological environments of deep strata frequently result in the coupling of multiple physical fields, including mechanical, thermal and hydraulic fields, during the fracturing of rocks. This review initially presents an overview of the coupling mechanisms of these physical fields, thereby elucidating the interaction processes of mechanical, thermal, and hydraulic fields within rock masses. Secondly, an in-depth analysis of multi-field coupling is… More >

  • Open Access

    ARTICLE

    Numerically and Experimentally Establishing Rheology Law for AISI 1045 Steel Based on Uniaxial Hot Compression Tests

    Josef Walek*, Petr Lichý

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3135-3153, 2025, DOI:10.32604/cmes.2025.059889 - 03 March 2025

    Abstract Plastometric experiments, supplemented with numerical simulations using the finite element method (FEM), can be advantageously used to characterize the deformation behavior of metallic materials. The accuracy of such simulations predicting deformation behaviors of materials is, however, primarily affected by the applied rheology law. The presented study focuses on the characterization of the deformation behavior of AISI 1045 type carbon steel, widely used e.g., in automotive and power engineering, under extreme conditions (i.e., high temperatures, strain rates). The study consists of two main parts: experimentally analyzing the flow stress development of the steel under different thermomechanical… More >

  • Open Access

    ARTICLE

    Numerical Simulation of the Flow and Heat Transfer in Novel Circumfluent Cyclone Separator during High-Temperature Converter Gas Recovery

    Ziyi Wang1,2, Sen Li1,2,*, Xiaolin Wei1,2, Jing Zhao1, Bo Li1, Yuan Yao1

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 163-184, 2025, DOI:10.32604/fhmt.2024.059740 - 26 February 2025

    Abstract In the novel fully dry converter gas recovery process, a novel circumfluent cyclone separator with an evaporation heating surface can simultaneously realize the dust removal and sensible heat recovery of converter gas. For this equipment, the distributions of internal flow and wall heat transfer affect the efficiency of dust removal and sensible heat recovery. In this study, based on on-site operation tests, the distributions of internal flow and wall heat transfer in the circumfluent cyclone separator are studied by numerical simulation. The results indicate that the flow rate proportions in different regions of the circumfluent More >

  • Open Access

    ARTICLE

    Numerical Simulation of Blood Flow Dynamics in a Stenosed Artery Enhanced by Copper and Alumina Nanoparticles

    Haris Alam Zuberi1, Madan Lal1, Amol Singh1, Nurul Amira Zainal2,3,*, Ali J. Chamkha4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1839-1864, 2025, DOI:10.32604/cmes.2024.056661 - 27 January 2025

    Abstract Nanotechnology holds immense importance in the biomedical field due to its ability to revolutionize healthcare on a molecular scale. Motivated by the imperative of enhancing patient outcomes, a comprehensive numerical simulation study on the dynamics of blood flow in a stenosed artery, focusing on the effects of copper and alumina nanoparticles, is conducted. The study employs a 2-dimensional Newtonian blood flow model infused with copper and alumina nanoparticles, considering the influence of a magnetic field, thermal radiation, and various flow parameters. The governing differential equations are first non-dimensionalized to facilitate analysis and subsequently solved using… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Flow and Temperature Distribution in a Bottom-Blown Copper Bath

    Teng Xia1,2, Xiaohui Zhang1,2,*, Ding Ma1,2, Zhi Yang1,2, Xinting Tong3, Yutang Zhao4, Hua Wang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 121-140, 2025, DOI:10.32604/fdmp.2025.058683 - 24 January 2025

    Abstract Smelting with oxygen bottom blowing is one of the main methods used in the frame of copper pyrometallurgy. With this approach, feed materials and oxygen-enriched air are introduced in reversed order to enhance multiphase flow within the furnace. Understanding the flow structure and temperature distribution in this setup is crucial for optimizing production. In this study, gas-liquid interactions, and temperature profiles under varying air-injection conditions are examined by means of numerical simulation for a 3.2 m × 20 m furnace. The results indicate that the high-velocity regions are essentially distributed near the lance within the… More > Graphic Abstract

    Numerical Simulation of Flow and Temperature Distribution in a Bottom-Blown Copper Bath

  • Open Access

    ARTICLE

    Numerical Simulation of Gas-LiquId Flow in a Horizontal Elbow

    Lihui Ma1, Wei Li1, Yuanyuan Wang1, Pan Zhang1, Lina Wang1, Xinying Liu1, Meiqin Dong2, Xuewen Cao2, Jiang Bian3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 107-119, 2025, DOI:10.32604/fdmp.2024.058295 - 24 January 2025

    Abstract Gas-liquid flow (GLF), especially slug and annular flows in oil and gas gathering and transportation pipelines, become particularly complex inside elbows and can easily exacerbate pipeline corrosion and damage. In this study, FLUENT was used to conduct 3D simulations of slug and annular flow in elbows for different velocities to assess the ensuing changes in terms of pressure. In particular, the multifluid VOF (Volume of Fraction) model was chosen. The results indicate that under both slug and annular flow conditions, the pressure inside the elbow is lower than the outside. As the superficial velocity More >

  • Open Access

    ARTICLE

    Numerical Analysis of Urban-Rail Vehicle/Tunnel Aerodynamic Interaction

    Haoran Meng1,2,3, Nianxun Li4, Xukui Shen2, Hong Zhang2, Tian Li4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 161-178, 2025, DOI:10.32604/fdmp.2024.055389 - 24 January 2025

    Abstract The pressure wave generated by an urban-rail vehicle when passing through a tunnel affects the comfort of passengers and may even cause damage to the train and related tunnel structures. Therefore, controlling the train speed in the tunnel is extremely important. In this study, this problem is investigated numerically in the framework of the standard k-ε two-equation turbulence model. In particular, an eight-car urban rail train passing through a tunnel at different speeds (140, 160, 180 and 200 km/h) is considered. The results show that the maximum aerodynamic drag of the head and tail cars is More >

  • Open Access

    ARTICLE

    Numerical Simulation of Gas-Solid Flow Processes in an Ash Conveying Pipeline with Multiple Feeds

    Kairuo Chen1, He Wang1,*, Xiangliang Wang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2721-2739, 2024, DOI:10.32604/fdmp.2024.055174 - 23 December 2024

    Abstract Pneumatic conveying technology, as an efficient material transportation method, has been widely used in various industrial fields. To study the powder transportation in horizontal ash conveying pipes, this study relies on the Computational Particle Fluid Dynamics (CPFD) numerical method. The characteristics of the gas-solid two-phase flow under continuous air supply conditions are analyzed, and the effects on particle movement of factors such as feed port spacing, inlet air velocity, and the number of discharge ports are explored accordingly. The research results show that when the inlet velocity is 5 m/s, adjacent discharged particles come into More >

  • Open Access

    PROCEEDINGS

    Optimized Design Study of Subsea Hydrothermal Closed-Loop Heat Collection System Based on Numerical Simulation

    Gaowei Yi1, Da Zhang1,2, Xinyu Liu1, Yan Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.3, pp. 1-3, 2024, DOI:10.32604/icces.2024.011165

    Abstract 1 Introduction
    With dwindling terrestrial energy resources, there's a societal consensus to harness clean, renewable energy. Submarine hydrothermal vents, hosting abundant and unexplored energy potentials, draw international academic scrutiny [1]. Yet, comprehensive research on exploiting their thermal energy systems remains sparse. Existing technologies persist with stability and efficiency challenges. While promising ventures in hydrothermal power generation exist, they grapple with heat loss, instability, limited capacity, and heightened damage susceptibility [2]. This study scrutinizes submarine hydrothermal vents, amalgamating terrestrial closed-loop geothermal technology to resolve challenges and enable efficient energy utilization [3]. Given the complex geology of these… More >

Displaying 1-10 on page 1 of 443. Per Page