Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (405)
  • Open Access

    ARTICLE

    Impact of Osmotic Pressure on Seepage in Shale Oil Reservoirs

    Lijun Mu, Xiaojia Xue, Jie Bai*, Xiaoyan Li, Xueliang Han

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1365-1379, 2024, DOI:10.32604/fdmp.2024.049013

    Abstract Following large-scale volume fracturing in shale oil reservoirs, well shut-in measures are generally employed. Laboratory tests and field trials have underscored the efficacy of fracturing fluid imbibition during the shut-in phase in augmenting shale oil productivity. Unlike conventional reservoirs, shale oil reservoirs exhibit characteristics such as low porosity, low permeability, and rich content of organic matter and clay minerals. Notably, the osmotic pressure effects occurring between high-salinity formation water and low-salinity fracturing fluids are significant. The current understanding of the mobilization patterns of crude oil in micro-pores during the imbibition process remains nebulous, and the… More >

  • Open Access

    ARTICLE

    Optimal Design of High-Speed Partial Flow Pumps using Orthogonal Tests and Numerical Simulations

    Jiaqiong Wang1,2, Tao Yang1, Chen Hu1, Yu Zhang3,*, Ling Zhou1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1203-1218, 2024, DOI:10.32604/fdmp.2023.045825

    Abstract To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm, special attention was paid to the first and second stage impeller guide vanes. Moreover, the impeller blade outlet width, impeller inlet diameter, blade inclination angle, and number of blades were considered for orthogonal tests. Accordingly, nine groups of design solutions were formed, and then used as a basis for the execution of numerical simulations (CFD) aimed at obtaining the efficiency values and heads for each design solution group. The More >

  • Open Access

    ARTICLE

    Structure Optimization of a Tesla Turbine Using an Organic Rankine Cycle Technology

    Yongguo Li1,2, Caiyin Xu1,2,*, Can Qin1,2, Dingjian Zheng1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1251-1263, 2024, DOI:10.32604/fdmp.2023.044804

    Abstract The so-called ORC (Organic Rankine Cycle) heat recovery technology has attracted much attention with regard to medium and low temperature waste heat recovery. In the present study, it is applied to a Tesla turbine. At the same time, the effects of the disc speed, diameter and inter-disc gap on the internal flow field and output power of the turbine are also investigated by means of CFD (Computational Fluid Dynamics) numerical simulation, by which the pressure, velocity, and output efficiency of the internal flow field are obtained under different internal and external conditions. The highest efficiency More >

  • Open Access

    ARTICLE

    Simulation of Fracture Process of Lightweight Aggregate Concrete Based on Digital Image Processing Technology

    Safwan Al-sayed, Xi Wang, Yijiang Peng*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4169-4195, 2024, DOI:10.32604/cmc.2024.048916

    Abstract The mechanical properties and failure mechanism of lightweight aggregate concrete (LWAC) is a hot topic in the engineering field, and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field. In this study, the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete. Through the information extraction and processing of the section image of actual light aggregate concrete specimens, the mesostructural model of light aggregate concrete with real aggregate characteristics is established. The numerical simulation of uniaxial tensile test, uniaxial compression… More >

  • Open Access

    ARTICLE

    Aerodynamic Analysis and Optimization of Pantograph Streamline Fairing for High-Speed Trains

    Xiang Kan1, Yan Li2, Tian Li1,*, Jiye Zhang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1075-1091, 2024, DOI:10.32604/fdmp.2023.044050

    Abstract A pantograph serves as a vital device for the collection of electricity in trains. However, its aerodynamic resistance can limit the train’s running speed. As installing fairings around the pantograph is known to effectively reduce the resistance, in this study, different fairing lengths are considered and the related aerodynamic performances of pantograph are assessed. In particular, this is accomplished through numerical simulations based on the k-ω Shear Stress Transport (SST) two-equation turbulence model. The results indicate that the fairing diminishes the direct impact of high-speed airflow on the pantograph, thereby reducing its aerodynamic resistance. However, it More >

  • Open Access

    ARTICLE

    Optimization of a Pipeline-Type Savonius Hydraulic Turbine

    Xiaohui Wang1,2,3,*, Kai Zhang1, Xiaobang Bai4, Senchun Miao1, Zanxiu Wu1, Jicheng Li1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1123-1146, 2024, DOI:10.32604/fdmp.2023.043272

    Abstract This study focuses on a DN50 pipeline-type Savonius hydraulic turbine. The torque variation of the turbine in a rotation cycle is analyzed theoretically in the framework of the plane potential flow theory. Related numerical simulations show that the change in turbine torque is consistent with the theoretical analysis, with the main power zone and the secondary power zone exhibiting a positive torque. In contrast, the primary resistance zone and the secondary resistance zone are characterized by a negative torque. Analytical relationships between the turbine’s internal flow angle θ, the deflector’s inclination angle α, and the… More >

  • Open Access

    ARTICLE

    Investigate the Impact of Dimple Size and Distribution on the Hydrothermal Performance of Dimpled Heat Exchanger Tubes

    Abeer H. Falih*, Basima Salman Khalaf, Basim Freegah

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 597-613, 2024, DOI:10.32604/fhmt.2024.049812

    Abstract In this study, the primary objective was to enhance the hydrothermal performance of a dimpled tube by addressing areas with low heat transfer compared to other regions. To accomplish this, a comprehensive numerical investigation was conducted using ANSYS Fluent 2022 R1 software, focusing on different diameters of dimples along the pipe’s length and the distribution of dimples in both in-line and staggered arrangements. The simulations utilized the finite element method to address turbulent flow within the tube by solving partial differential equations, encompassing Re numbers spanning from 3000 to 8000. The study specifically examined single-phase… More > Graphic Abstract

    Investigate the Impact of Dimple Size and Distribution on the Hydrothermal Performance of Dimpled Heat Exchanger Tubes

  • Open Access

    ARTICLE

    An Experimental and Numerical Thermal Flow Analysis in a Solar Air Collector with Different Delta Wing Height Ratios

    Ghobad Shafiei Sabet1,*, Ali Sari1, Ahmad Fakhari2,*, Nasrin Afsarimanesh3, Dominic Organ4, Seyed Mehran Hoseini1

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 491-509, 2024, DOI:10.32604/fhmt.2024.048290

    Abstract This study conducts both numerical and empirical assessments of thermal transfer and fluid flow characteristics in a Solar Air Collector (SAC) using a Delta Wing Vortex Generator (DWVG), and the effects of different height ratios (R = 0.6, 0.8, 1, 1.2 and 1.4) in delta wing vortex generators, which were not considered in the earlier studies, are investigated. Energy and exergy analyses are performed to gain maximum efficiency. The Reynolds number based on the outlet velocity and hydraulic diameter falls between 4400 and 22000, corresponding to the volume flow rate of 5.21–26.07 m/h. It is More >

  • Open Access

    ARTICLE

    Research on the Method of Heat Preservation and Heating for the Drilling System of Polar Offshore Drilling Platform

    Yingkai Dong1,2, Chaohe Chen2,*, Guangyan Jia2, Lidai Wang3, Jian Bai1

    Energy Engineering, Vol.121, No.5, pp. 1173-1193, 2024, DOI:10.32604/ee.2024.046432

    Abstract This study investigates the heat dissipation mechanism of the insulation layer and other plane insulation layers in the polar drilling rig system. Combining the basic theory of heat transfer with the environmental requirements of polar drilling operations and the characteristics of polar drilling processes, we analyze the factors that affect the insulation effect of the drilling rig system. These factors include the thermal conductivity of the insulation material, the thickness of the insulation layer, ambient temperature, and wind speed. We optimize the thermal insulation material of the polar drilling rig system using a steady-state method… More >

  • Open Access

    ARTICLE

    A Coupled Thermomechanical Crack Propagation Behavior of Brittle Materials by Peridynamic Differential Operator

    Tianyi Li1,2, Xin Gu2, Qing Zhang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 339-361, 2024, DOI:10.32604/cmes.2024.047566

    Abstract This study proposes a comprehensive, coupled thermomechanical model that replaces local spatial derivatives in classical differential thermomechanical equations with nonlocal integral forms derived from the peridynamic differential operator (PDDO), eliminating the need for calibration procedures. The model employs a multi-rate explicit time integration scheme to handle varying time scales in multi-physics systems. Through simulations conducted on granite and ceramic materials, this model demonstrates its effectiveness. It successfully simulates thermal damage behavior in granite arising from incompatible mineral expansion and accurately calculates thermal crack propagation in ceramic slabs during quenching. To account for material heterogeneity, the More >

Displaying 21-30 on page 3 of 405. Per Page