Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (35)
  • Open Access

    ARTICLE

    THE EFFECTS OF WINGLET VORTEX GENERATOR POSITION IN RECTANGULAR-DUCT-TYPE SOLAR AIR HEATERS

    Boonchai Lertnuwat

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-9, 2022, DOI:10.5098/hmt.18.1

    Abstract The aim of this work is to numerically investigate the effect of mounting winglet vortex generators on different positions in rectangular-duct-type air heaters. The two investigated positions were the absorber plate and the insulation plate, opposite to the absorber plate. Four shapes of winglet vortex generator, i.e. perforated rectangular winglet vortex generators (P-RWVG), rectangular winglet vortex generators (RWVG), perforated trapezoidal winglet vortex generators (P-TWVG) and trapezoidal winglet vortex generators (TWVG), were used. Results showed that heat-transfer capability would be better if the winglet vortex generators were mounted on the opposite insulation plate in the cases More >

  • Open Access

    ARTICLE

    STUDY ON HEAT TRANSFER AUGMENTATION IN AN AIR HEATER USING RECTANGULAR WAVY FIN TURBULATORS

    Nitesh Kumar, Shiva Kumar*

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 10-11, 2022, DOI:10.5098/hmt.19.10

    Abstract In the present study, the use of wavy fin turbulators on the annulus body of a double pipe air heater has been numerically investigated. The inner pipe consists of hot water whereas the annular section consists of cold air whose Reynolds Number (Re) ranged from 3000-15,000. Rectangular crosssectioned wavy fin turbulators with various curvature ratios of 2, 3, 5, and 7.5 is numerically simulated to investigate the influence of curvature effects on turbulence. Results have been compared with the bare pipe and with rectangular straight fins. It is seen that wavy fin turbulators perform better More >

  • Open Access

    ARTICLE

    EXPERIMENTAL STUDY OF CONVECTIVE HEAT TRANSFER OF ALUMINA OXIDE NANOFLUIDS IN TRIANGLE CHANNEL WITH UNIFORM HEAT FLUX

    Kaprawi Sahim*, Dewi Puspitasari, Nukman

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-6, 2021, DOI:10.5098/hmt.16.22

    Abstract The recent trend application of the nanofluids is used in some industrial equipment such as tube heat exchanger, double pipe exchanger and shell-tube type heat exchanger. The Triangle tubes may be used in the heat exchanger. Thus, this experimental study reports the convective heat transfer performance of the aluminum oxide-water nanofluids flowing in the triangle channel. In this study, the amount of the volume fraction of the Al2O3 used was 0.1 %, 0.2 %, and 0.3 respectively in base-water as the nanofluids and the Reynolds numbers were varied from about 1000 to 7000. The channel was… More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF NUSSELT NUMBER FOR NANOFLUIDS FLOW IN AN INCLINED CYLINDER

    Kafel Azeez Mohammeda,*, Ahmed Mustaffa Saleemb , Zain alabdeen H. Obaida

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-8, 2021, DOI:10.5098/hmt.16.20

    Abstract Numerical investigation is performed for the determination of Nusselt number of ZnO, TiO2 and SiO2 nanoparticles dispersed in 60% ethylene glycol and 40% water inside inclined cylinder for adiabatic and isothermal process. The present study was conducted for both the constant heat flux (10,000 W/m2) and constant wall temperature (313.15 K) boundary conditions. At the inlet, the uniform axial velocity and initial temperature (293 K) were assumed. The results show the change of average Nusselt number at Reynolds number (400), Rayleigh number (106) and volume fraction percentage (2%). From results for adiabatic process when increasing the slop More >

  • Open Access

    ARTICLE

    Al2O3 and γAl2O3 Nanomaterials Based Nanofluid Models with Surface Diffusion: Applications for Thermal Performance in Multiple Engineering Systems and Industries

    Adnan1, Umar Khan2, Naveed Ahmed3, Syed Tauseef Mohyud-Din4, Ilyas Khan5,*, Dumitru Baleanu6,7,8, Kottakkaran Sooppy Nisar9

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1563-1576, 2021, DOI:10.32604/cmc.2020.012326 - 26 November 2020

    Abstract Thermal transport investigation in colloidal suspensions is taking a significant research direction. The applications of these fluids are found in various industries, engineering, aerodynamics, mechanical engineering and medical sciences etc. A huge amount of thermal transport is essential in the operation of various industrial production processes. It is a fact that conventional liquids have lower thermal transport characteristics as compared to colloidal suspensions. The colloidal suspensions have high thermal performance due to the thermophysical attributes of the nanoparticles and the host liquid. Therefore, researchers focused on the analysis of the heat transport in nanofluids under… More >

  • Open Access

    ARTICLE

    Comparative Thermal Performance in SiO2–H2O and (MoS2–SiO2)–H2O Over a Curved Stretching Semi-Infinite Region: A Numerical Investigation

    Basharat Ullah1, Umar Khan1, Hafiz Abdul Wahab1, Ilyas Khan2,*, Dumitru Baleanu3,4,5, Kottakkaran Sooppy Nisar6

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 947-960, 2021, DOI:10.32604/cmc.2020.012430 - 30 October 2020

    Abstract The investigation of Thermal performance in nanofluids and hybrid nanofluids over a curved stretching infinite region strengthens its roots in engineering and industry. Therefore, the comparative thermal analysis in SiO2–H2O and (MoS2–SiO2)–H2O is conducted over curved stretching surface. The model is reduced in the dimensional version via similarity transformation and then treated numerically. The velocity and thermal behavior for both the fluids is decorated against the preeminent parameters. From the analysis, it is examined that the motion of under consideration fluids declines against Fr and λ. The thermal performance enhances for higher volumetric fraction and λ. More >

  • Open Access

    ARTICLE

    TURBULENT HEAT TRANSFER IN AN AXIALLY ROTATING PIPE AT HIGH ROTATION RATE: A NUMERICAL STUDY

    Obed Y.W. Abotsi, John P. Kizito*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-6, 2020, DOI:10.5098/hmt.14.24

    Abstract In this paper, turbulent water flow and heat transfer are studied numerically in a pipe which is rotating about its longitudinal axis. Computations were conducted for axial Reynolds numbers ranging from 10000 to 30000 at different rotation rates. Rotation rate (N) is the ratio of the rotational Reynolds number to the axial Reynolds number. Predictions showed that the Nusselt number (Nu) of the stationary pipe (N=0) was augmented by 50-58% at N=5, 105-132% at N=10, 150-201% at N=15, 208-265% at N=20, and 320-373% at N=30. Improvements in the heat transfer rate was linked to the More >

  • Open Access

    ARTICLE

    INFLUENCE OF RING SIZE AND LOCATION ON FLOW TOPOLOGY, HEAT TRANSFER STRUCTURE AND THERMAL EFFICIENCY IN HEAT EXCHANGER SQUARE CHANNEL PLACED WITH 30-DEGREE INCLINED SQUARE RING

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-11, 2019, DOI:10.5098/hmt.13.28

    Abstract This paper presents the numerical investigations (finite volume method with SIMPLE algorithm) on flow structure, heat transfer behavior and performance assessment in heat exchanger square channel placed with 30o inclined square ring (ISR). The influences of ring size and placement on flow and heat transfer characteristics are considered for laminar flow region with the Reynolds number in the range around 100 – 2000. The purpose for the insertion of the ISR in the square channel is to induce the vortex flow and also increase the turbulent mixing. The numerical result reveals that the ring size More >

  • Open Access

    ARTICLE

    FLOW AND HEAT TRANSFER CHARACTERISTICS OF AIR IN SQUARE CHANNEL HEAT EXCHANGER WITH C-SHAPED BAFFLE: A NUMERICAL STUDY

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-18, 2019, DOI:10.5098/hmt.13.23

    Abstract The purpose of the present work is to study flow configuration and heat transfer behavior in a square channel heat exchanger equipped with C-shaped baffle. The influences of flow attack angle and baffle size on flow and heat transfer characteristics are considered for the laminar flow regime with the Reynolds number around 100 – 2000. The numerical study with finite volume method is selected for the present investigation. The SIMPLE algorithms is opted to solve the numerical problem. The numerical results are concluded in terms of flow and heat transfer mechanisms in the tested section.… More >

  • Open Access

    ARTICLE

    MHD FLOW IN A CIRCULAR HORIZONTAL PIPE UNDER HEAT SOURCE/SINK WITH SUCTION/INJECTION ON WALL

    G. Nagarajua,∗ , Mahesh Garvandhab, J.V. Ramana Murthyc

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-8, 2019, DOI:10.5098/hmt.13.6

    Abstract This paper analyzes a hypothesis of the 2−dimensional thermal transport behavior of Newtonian axisymmetric, viscous heating flow in a horizontal pipe. The flow is subjected to an externally applied uniform suction across the pipe wall in the polar direction, a constant magnetic field perpendicular to the wall and a uniform heat source/sink on the surface of the cylinder. The thermal boundary condition is imposed as a uniform heat flux. The Velocity fields are expressed in terms of stream function and the solution is obtained using the homotopy analysis method (HAM). Graphs are designed to analyze More >

Displaying 11-20 on page 2 of 35. Per Page