Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Zero-Shot Vision-Based Robust 3D Map Reconstruction and Obstacle Detection in Geometry-Deficient Room-Scale Environments

    Taehoon Kim, Sehun Lee, Junho Ahn*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-30, 2026, DOI:10.32604/cmc.2025.071597 - 09 December 2025

    Abstract As large, room-scale environments become increasingly common, their spatial complexity increases due to variable, unstructured elements. Consequently, demand for room-scale service robots is surging, yet most technologies remain corridor-centric, and autonomous navigation in expansive rooms becomes unstable even around static obstacles. Existing approaches face several structural limitations. These include the labor-intensive requirement for large-scale object annotation and continual retraining, as well as the vulnerability of vanishing point or line-based methods when geometric cues are insufficient. In addition, the high cost of LiDAR and 3D perception errors caused by limited wall cues and dense interior clutter… More >

  • Open Access

    ARTICLE

    A Lightweight UAV Visual Obstacle Avoidance Algorithm Based on Improved YOLOv8

    Zongdong Du1,2, Xuefeng Feng3, Feng Li3, Qinglong Xian3, Zhenhong Jia1,2,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2607-2627, 2024, DOI:10.32604/cmc.2024.056616 - 18 November 2024

    Abstract The importance of unmanned aerial vehicle (UAV) obstacle avoidance algorithms lies in their ability to ensure flight safety and collision avoidance, thereby protecting people and property. We propose UAD-YOLOv8, a lightweight YOLOv8-based obstacle detection algorithm optimized for UAV obstacle avoidance. The algorithm enhances the detection capability for small and irregular obstacles by removing the P5 feature layer and introducing deformable convolution v2 (DCNv2) to optimize the cross stage partial bottleneck with 2 convolutions and fusion (C2f) module. Additionally, it reduces the model’s parameter count and computational load by constructing the unite ghost and depth-wise separable… More >

  • Open Access

    ARTICLE

    Deep Reinforcement Learning Based Unmanned Aerial Vehicle (UAV) Control Using 3D Hand Gestures

    Fawad Salam Khan1,4, Mohd Norzali Haji Mohd1,*, Saiful Azrin B. M. Zulkifli2, Ghulam E Mustafa Abro2, Suhail Kazi3, Dur Muhammad Soomro1

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5741-5759, 2022, DOI:10.32604/cmc.2022.024927 - 21 April 2022

    Abstract The evident change in the design of the autopilot system produced massive help for the aviation industry and it required frequent upgrades. Reinforcement learning delivers appropriate outcomes when considering a continuous environment where the controlling Unmanned Aerial Vehicle (UAV) required maximum accuracy. In this paper, we designed a hybrid framework, which is based on Reinforcement Learning and Deep Learning where the traditional electronic flight controller is replaced by using 3D hand gestures. The algorithm is designed to take the input from 3D hand gestures and integrate with the Deep Deterministic Policy Gradient (DDPG) to receive… More >

Displaying 1-10 on page 1 of 3. Per Page