Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (327)
  • Open Access

    ARTICLE

    UAV 3D Path Planning Based on Improved Chimp Optimization Algorithm

    Wenli Lei1,2,*, Xinghao Wu1,2, Kun Jia1,2, Jinping Han1,2

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5679-5698, 2025, DOI:10.32604/cmc.2025.061268 - 19 May 2025

    Abstract Aiming to address the limitations of the standard Chimp Optimization Algorithm (ChOA), such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle (UAV) path planning, this paper proposes a three-dimensional path planning method for UAVs based on the Improved Chimp Optimization Algorithm (IChOA). First, this paper models the terrain and obstacle environments spatially and formulates the total UAV flight cost function according to the constraints, transforming the path planning problem into an optimization problem with multiple constraints. Second, this paper enhances the diversity of the chimpanzee population by applying the Sine… More >

  • Open Access

    ARTICLE

    Optimization of Supply and Demand Balancing in Park-Level Energy Systems Considering Comprehensive Utilization of Hydrogen under P2G-CCS Coupling

    Zhiyuan Zhang1, Yongjun Wu1, Xiqin Li1, Minghui Song1, Guangwu Zhang2, Ziren Wang3,*, Wei Li3

    Energy Engineering, Vol.122, No.5, pp. 1919-1948, 2025, DOI:10.32604/ee.2025.063178 - 25 April 2025

    Abstract The park-level integrated energy system (PIES) is essential for achieving carbon neutrality by managing multi-energy supply and demand while enhancing renewable energy integration. However, current carbon trading mechanisms lack sufficient incentives for emission reductions, and traditional optimization algorithms often face challenges with convergence and local optima in complex PIES scheduling. To address these issues, this paper introduces a low-carbon dispatch strategy that combines a reward-penalty tiered carbon trading model with P2G-CCS integration, hydrogen utilization, and the Secretary Bird Optimization Algorithm (SBOA). Key innovations include: (1) A dynamic reward-penalty carbon trading mechanism with coefficients (μ = 0.2,… More >

  • Open Access

    ARTICLE

    Barber Optimization Algorithm: A New Human-Based Approach for Solving Optimization Problems

    Tareq Hamadneh1, Belal Batiha2, Omar Alsayyed3, Widi Aribowo4, Zeinab Montazeri5, Mohammad Dehghani5,*, Frank Werner6,*, Haider Ali7, Riyadh Kareem Jawad8, Ibraheem Kasim Ibraheem9, Kei Eguchi10

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2677-2718, 2025, DOI:10.32604/cmc.2025.064087 - 16 April 2025

    Abstract In this study, a completely different approach to optimization is introduced through the development of a novel metaheuristic algorithm called the Barber Optimization Algorithm (BaOA). Inspired by the human interactions between barbers and customers, BaOA captures two key processes: the customer’s selection of a hairstyle and the detailed refinement during the haircut. These processes are translated into a mathematical framework that forms the foundation of BaOA, consisting of two critical phases: exploration, representing the creative selection process, and exploitation, which focuses on refining details for optimization. The performance of BaOA is evaluated using 52 standard… More >

  • Open Access

    ARTICLE

    Collaborative Decomposition Multi-Objective Improved Elephant Clan Optimization Based on Penalty-Based and Normal Boundary Intersection

    Mengjiao Wei1,*, Wenyu Liu2

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2505-2523, 2025, DOI:10.32604/cmc.2025.060887 - 16 April 2025

    Abstract In recent years, decomposition-based evolutionary algorithms have become popular algorithms for solving multi-objective problems in real-life scenarios. In these algorithms, the reference vectors of the Penalty-Based boundary intersection (PBI) are distributed parallelly while those based on the normal boundary intersection (NBI) are distributed radially in a conical shape in the objective space. To improve the problem-solving effectiveness of multi-objective optimization algorithms in engineering applications, this paper addresses the improvement of the Collaborative Decomposition (CoD) method, a multi-objective decomposition technique that integrates PBI and NBI, and combines it with the Elephant Clan Optimization Algorithm, introducing the… More >

  • Open Access

    ARTICLE

    Maximum Power Point Tracking Control of Offshore Wind-Photovoltaic Hybrid Power Generation System with Crane-Assisted

    Xiangyang Cao1,2, Yaojie Zheng1,2, Hanbin Xiao1,2,*, Min Xiao2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 289-334, 2025, DOI:10.32604/cmes.2025.063954 - 11 April 2025

    Abstract This study investigates the Maximum Power Point Tracking (MPPT) control method of offshore wind-photovoltaic hybrid power generation system with offshore crane-assisted. A new algorithm of Global Fast Integral Sliding Mode Control (GFISMC) is proposed based on the tip speed ratio method and sliding mode control. The algorithm uses fast integral sliding mode surface and fuzzy fast switching control items to ensure that the offshore wind power generation system can track the maximum power point quickly and with low jitter. An offshore wind power generation system model is presented to verify the algorithm effect. An offshore More >

  • Open Access

    ARTICLE

    Advanced Machine Learning and Gene Expression Programming Techniques for Predicting CO2-Induced Alterations in Coal Strength

    Zijian Liu1, Yong Shi2, Chuanqi Li1, Xiliang Zhang3,*, Jian Zhou1, Manoj Khandelwal4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 153-183, 2025, DOI:10.32604/cmes.2025.062426 - 11 April 2025

    Abstract Given the growing concern over global warming and the critical role of carbon dioxide (CO2) in this phenomenon, the study of CO2-induced alterations in coal strength has garnered significant attention due to its implications for carbon sequestration. A large number of experiments have proved that CO2 interaction time (T), saturation pressure (P) and other parameters have significant effects on coal strength. However, accurate evaluation of CO2-induced alterations in coal strength is still a difficult problem, so it is particularly important to establish accurate and efficient prediction models. This study explored the application of advanced machine learning (ML)… More >

  • Open Access

    ARTICLE

    Improving Shallow Foundation Settlement Prediction through Intelligent Optimization Techniques

    Hadi Fattahi1, Hossein Ghaedi1, Danial Jahed Armaghani2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 747-766, 2025, DOI:10.32604/cmes.2025.062390 - 11 April 2025

    Abstract In contemporary geotechnical projects, various approaches are employed for forecasting the settlement of shallow foundations (Sm). However, achieving precise modeling of foundation behavior using certain techniques (such as analytical, numerical, and regression) is challenging and sometimes unattainable. This is primarily due to the inherent nonlinearity of the model, the intricate nature of geotechnical materials, the complex interaction between soil and foundation, and the inherent uncertainty in soil parameters. Therefore, these methods often introduce assumptions and simplifications, resulting in relationships that deviate from the actual problem’s reality. In addition, many of these methods demand significant investments of… More >

  • Open Access

    ARTICLE

    MOCBOA: Multi-Objective Chef-Based Optimization Algorithm Using Hybrid Dominance Relations for Solving Engineering Design Problems

    Nour Elhouda Chalabi1, Abdelouahab Attia2, Abdulaziz S. Almazyad3, Ali Wagdy Mohamed4,5, Frank Werner6, Pradeep Jangir7, Mohammad Shokouhifar8,9,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 967-1008, 2025, DOI:10.32604/cmes.2025.062332 - 11 April 2025

    Abstract Multi-objective optimization is critical for problem-solving in engineering, economics, and AI. This study introduces the Multi-Objective Chef-Based Optimization Algorithm (MOCBOA), an upgraded version of the Chef-Based Optimization Algorithm (CBOA) that addresses distinct objectives. Our approach is unique in systematically examining four dominance relations—Pareto, Epsilon, Cone-epsilon, and Strengthened dominance—to evaluate their influence on sustaining solution variety and driving convergence toward the Pareto front. Our comparison investigation, which was conducted on fifty test problems from the CEC 2021 benchmark and applied to areas such as chemical engineering, mechanical design, and power systems, reveals that the dominance approach More >

  • Open Access

    ARTICLE

    SL-COA: Hybrid Efficient and Enhanced Coati Optimization Algorithm for Structural Reliability Analysis

    Yunhan Ling1, Huajun Peng2, Yiqing Shi1,*, Chao Xu1, Jingzhen Yan1, Jingjing Wang1, Hui Ma3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 767-808, 2025, DOI:10.32604/cmes.2025.061763 - 11 April 2025

    Abstract The traditional first-order reliability method (FORM) often encounters challenges with non-convergence of results or excessive calculation when analyzing complex engineering problems. To improve the global convergence speed of structural reliability analysis, an improved coati optimization algorithm (COA) is proposed in this paper. In this study, the social learning strategy is used to improve the coati optimization algorithm (SL-COA), which improves the convergence speed and robustness of the new heuristic optimization algorithm. Then, the SL-COA is compared with the latest heuristic optimization algorithms such as the original COA, whale optimization algorithm (WOA), and osprey optimization algorithm… More >

  • Open Access

    ARTICLE

    Optimization of Dimensional Factors Using AI Technique Affecting Solar Dryer Efficiency for Drying Agricultural Materials

    Ravendra Kumar Ray*, A.C. Tiwari

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 845-860, 2025, DOI:10.32604/cmc.2025.059435 - 26 March 2025

    Abstract The design and development of solar dryers are crucial in regions with abundant solar energy, such as Bhopal, India, where seasonal variations significantly impact the efficiency of drying processes. The paper is focused on employing a comprehensive mathematical model to predict the dryer’s performance in drying the materials such as banana slices. To enhance this model, Hyper Tuned Swarm Optimization with Gradient Tree (HT_SOGT) was utilized to accurately predict and determine the optimal size of the dryer dimensions considering various mathematical calculations for material drying. The predictive model considered the influence of seasonal fluctuations, ensuring More >

Displaying 31-40 on page 4 of 327. Per Page