Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (240)
  • Open Access

    ARTICLE

    Binary Archimedes Optimization Algorithm for Computing Dominant Metric Dimension Problem

    Basma Mohamed1,*, Linda Mohaisen2, Mohammed Amin1

    Intelligent Automation & Soft Computing, Vol.38, No.1, pp. 19-34, 2023, DOI:10.32604/iasc.2023.031947

    Abstract In this paper, we consider the NP-hard problem of finding the minimum dominant resolving set of graphs. A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the vertices in B. A resolving set is dominating if every vertex of G that does not belong to B is a neighbor to some vertices in B. The dominant metric dimension of G is the cardinality number of the minimum dominant resolving set. The dominant metric dimension is computed by a binary version of the Archimedes optimization… More >

  • Open Access

    ARTICLE

    Optimization Algorithms of PERT/CPM Network Diagrams in Linear Diophantine Fuzzy Environment

    Mani Parimala1, Karthikeyan Prakash1, Ashraf Al-Quran2,*, Muhammad Riaz3, Saeid Jafari4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 1095-1118, 2024, DOI:10.32604/cmes.2023.031193

    Abstract The idea of linear Diophantine fuzzy set (LDFS) theory with its control parameters is a strong model for machine learning and optimization under uncertainty. The activity times in the critical path method (CPM) representation procedures approach are initially static, but in the Project Evaluation and Review Technique (PERT) approach, they are probabilistic. This study proposes a novel way of project review and assessment methodology for a project network in a linear Diophantine fuzzy (LDF) environment. The LDF expected task time, LDF variance, LDF critical path, and LDF total expected time for determining the project network… More > Graphic Abstract

    Optimization Algorithms of PERT/CPM Network Diagrams in Linear Diophantine Fuzzy Environment

  • Open Access

    ARTICLE

    A Comparative Study of Metaheuristic Optimization Algorithms for Solving Real-World Engineering Design Problems

    Elif Varol Altay, Osman Altay, Yusuf Özçevik*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 1039-1094, 2024, DOI:10.32604/cmes.2023.029404

    Abstract Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve. Such design problems are widely experienced in many engineering fields, such as industry, automotive, construction, machinery, and interdisciplinary research. However, there are established optimization techniques that have shown effectiveness in addressing these types of issues. This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues. The algorithms used in the study are listed as: transient search optimization (TSO), equilibrium optimizer (EO), grey wolf optimizer… More >

  • Open Access

    ARTICLE

    An Improved Whale Optimization Algorithm for Global Optimization and Realized Volatility Prediction

    Xiang Wang1, Liangsa Wang2,*, Han Li1, Yibin Guo1

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2935-2969, 2023, DOI:10.32604/cmc.2023.044948

    Abstract The original whale optimization algorithm (WOA) has a low initial population quality and tends to converge to local optimal solutions. To address these challenges, this paper introduces an improved whale optimization algorithm called OLCHWOA, incorporating a chaos mechanism and an opposition-based learning strategy. This algorithm introduces chaotic initialization and opposition-based initialization operators during the population initialization phase, thereby enhancing the quality of the initial whale population. Additionally, including an elite opposition-based learning operator significantly improves the algorithm’s global search capabilities during iterations. The work and contributions of this paper are primarily reflected in two aspects.… More >

  • Open Access

    ARTICLE

    SCChOA: Hybrid Sine-Cosine Chimp Optimization Algorithm for Feature Selection

    Shanshan Wang1,2,3, Quan Yuan1, Weiwei Tan1, Tengfei Yang1, Liang Zeng1,2,3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3057-3075, 2023, DOI:10.32604/cmc.2023.044807

    Abstract Feature Selection (FS) is an important problem that involves selecting the most informative subset of features from a dataset to improve classification accuracy. However, due to the high dimensionality and complexity of the dataset, most optimization algorithms for feature selection suffer from a balance issue during the search process. Therefore, the present paper proposes a hybrid Sine-Cosine Chimp Optimization Algorithm (SCChOA) to address the feature selection problem. In this approach, firstly, a multi-cycle iterative strategy is designed to better combine the Sine-Cosine Algorithm (SCA) and the Chimp Optimization Algorithm (ChOA), enabling a more effective search… More >

  • Open Access

    ARTICLE

    Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation

    Caixia Tao, Shize Yang*, Taiguo Li

    Energy Engineering, Vol.121, No.1, pp. 187-201, 2024, DOI:10.32604/ee.2023.042421

    Abstract With the current integration of distributed energy resources into the grid, the structure of distribution networks is becoming more complex. This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms. Consequently, traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima. To tackle this issue, a more advanced particle swarm optimization algorithm is proposed. To address the varying emphases at different stages of the optimization process, a dynamic strategy is implemented to regulate the social and self-learning factors. The Metropolis criterion is introduced into… More >

  • Open Access

    ARTICLE

    Modified Black Widow Optimization-Based Enhanced Threshold Energy Detection Technique for Spectrum Sensing in Cognitive Radio Networks

    R. Saravanan1,*, R. Muthaiah1, A. Rajesh2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2339-2356, 2024, DOI:10.32604/cmes.2023.030898

    Abstract This study develops an Enhanced Threshold Based Energy Detection approach (ETBED) for spectrum sensing in a cognitive radio network. The threshold identification method is implemented in the received signal at the secondary user based on the square law. The proposed method is implemented with the signal transmission of multiple outputs-orthogonal frequency division multiplexing. Additionally, the proposed method is considered the dynamic detection threshold adjustments and energy identification spectrum sensing technique in cognitive radio systems. In the dynamic threshold, the signal ratio-based threshold is fixed. The threshold is computed by considering the Modified Black Widow Optimization… More > Graphic Abstract

    Modified Black Widow Optimization-Based Enhanced Threshold Energy Detection Technique for Spectrum Sensing in Cognitive Radio Networks

  • Open Access

    ARTICLE

    An Optimal Node Localization in WSN Based on Siege Whale Optimization Algorithm

    Thi-Kien Dao1, Trong-The Nguyen1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2201-2237, 2024, DOI:10.32604/cmes.2023.029880

    Abstract Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging and fundamental operations in various monitoring or tracking applications because the network deploys a large area and allocates the acquired location information to unknown devices. The metaheuristic approach is one of the most advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditional methods that often suffer from computational time problems and small network deployment scale. This study proposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on the siege mechanism… More >

  • Open Access

    ARTICLE

    Research on Stick-Slip Vibration Suppression Method of Drill String Based on Machine Learning Optimization

    Kanhua Su, Jian Wei*, Meng Li, Hao Li, Wenghao Da, Lang Zhang

    Sound & Vibration, Vol.57, pp. 97-117, 2023, DOI:10.32604/sv.2023.043734

    Abstract During the drilling process, stick-slip vibration of the drill string is mainly caused by the nonlinear friction generated by the contact between the drill bit and the rock. To eliminate the fatigue wear of downhole drilling tools caused by stick-slip vibrations, the Fractional-Order Proportional-Integral-Derivative (FOPID) controller is used to suppress stick-slip vibrations in the drill string. Although the FOPID controller can effectively suppress the drill string stick-slip vibration, its structure is flexible and parameter setting is complicated, so it needs to use the corresponding machine learning algorithm for parameter optimization. Based on the principle of… More > Graphic Abstract

    Research on Stick-Slip Vibration Suppression Method of Drill String Based on Machine Learning Optimization

  • Open Access

    ARTICLE

    Design Optimization of Permanent Magnet Eddy Current Coupler Based on an Intelligence Algorithm

    Dazhi Wang*, Pengyi Pan, Bowen Niu

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1535-1555, 2023, DOI:10.32604/cmc.2023.042286

    Abstract The permanent magnet eddy current coupler (PMEC) solves the problem of flexible connection and speed regulation between the motor and the load and is widely used in electrical transmission systems. It provides torque to the load and generates heat and losses, reducing its energy transfer efficiency. This issue has become an obstacle for PMEC to develop toward a higher power. This paper aims to improve the overall performance of PMEC through multi-objective optimization methods. Firstly, a PMEC modeling method based on the Levenberg-Marquardt back propagation (LMBP) neural network is proposed, aiming at the characteristics of… More >

Displaying 31-40 on page 4 of 240. Per Page