Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Framework for the Structural Analysis of Fractional Differential Equations via Optimized Model Reduction

    Inga Telksniene1, Tadas Telksnys2, Romas Marcinkevičius3, Zenonas Navickas2, Raimondas Čiegis1, Minvydas Ragulskis2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2131-2156, 2025, DOI:10.32604/cmes.2025.072938 - 26 November 2025

    Abstract Fractional differential equations (FDEs) provide a powerful tool for modeling systems with memory and non-local effects, but understanding their underlying structure remains a significant challenge. While numerous numerical and semi-analytical methods exist to find solutions, new approaches are needed to analyze the intrinsic properties of the FDEs themselves. This paper introduces a novel computational framework for the structural analysis of FDEs involving iterated Caputo derivatives. The methodology is based on a transformation that recasts the original FDE into an equivalent higher-order form, represented as the sum of a closed-form, integer-order component G(y) and a residual… More >

  • Open Access

    ARTICLE

    Graph-Embedded Neural Architecture Search: A Variational Approach for Optimized Model Design

    Kazuki Hemmi1,2,*, Yuki Tanigaki3, Kaisei Hara4, Masaki Onishi1,2

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2245-2271, 2025, DOI:10.32604/cmc.2025.064969 - 03 July 2025

    Abstract Neural architecture search (NAS) optimizes neural network architectures to align with specific data and objectives, thereby enabling the design of high-performance models without specialized expertise. However, a significant limitation of NAS is that it requires extensive computational resources and time. Consequently, performing a comprehensive architectural search for each new dataset is inefficient. Given the continuous expansion of available datasets, there is an urgent need to predict the optimal architecture for the previously unknown datasets. This study proposes a novel framework that generates architectures tailored to unknown datasets by mapping architectures that have demonstrated effectiveness on… More >

  • Open Access

    ARTICLE

    Optimized Model Based Controller with Model Plant Mismatch for NMP Mitigation in Boost Converter

    R. Prasanna1,*, Uma Govindarajan1, N. S. Bhuvaneswari2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1961-1979, 2023, DOI:10.32604/csse.2023.032424 - 09 February 2023

    Abstract In this paper, an optimized Genetic Algorithm (GA) based internal model controller-proportional integral derivative (IMC-PID) controller has been designed for the control variable to output variable transfer function of dc-dc boost converter to mitigate the effect of non-minimum phase (NMP) behavior due to the presence of a right-half plane zero (RHPZ). This RHPZ limits the dynamic performance of the converter and leads to internal instability. The IMC PID is a streamlined counterpart of the standard feedback controller and easily achieves optimal set point and load change performance with a single filter tuning parameter λ. Also, More >

  • Open Access

    ARTICLE

    An Improved Optimized Model for Invisible Backdoor Attack Creation Using Steganography

    Daniyal M. Alghazzawi1, Osama Bassam J. Rabie1, Surbhi Bhatia2, Syed Hamid Hasan1,*

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1173-1193, 2022, DOI:10.32604/cmc.2022.022748 - 24 February 2022

    Abstract The Deep Neural Networks (DNN) training process is widely affected by backdoor attacks. The backdoor attack is excellent at concealing its identity in the DNN by performing well on regular samples and displaying malicious behavior with data poisoning triggers. The state-of-art backdoor attacks mainly follow a certain assumption that the trigger is sample-agnostic and different poisoned samples use the same trigger. To overcome this problem, in this work we are creating a backdoor attack to check their strength to withstand complex defense strategies, and in order to achieve this objective, we are developing an improved… More >

  • Open Access

    ARTICLE

    An Optimized CNN Model Architecture for Detecting Coronavirus (COVID-19) with X-Ray Images

    Anas Basalamah1, Shadikur Rahman2,*

    Computer Systems Science and Engineering, Vol.40, No.1, pp. 375-388, 2022, DOI:10.32604/csse.2022.016949 - 26 August 2021

    Abstract This paper demonstrates empirical research on using convolutional neural networks (CNN) of deep learning techniques to classify X-rays of COVID-19 patients versus normal patients by feature extraction. Feature extraction is one of the most significant phases for classifying medical X-rays radiography that requires inclusive domain knowledge. In this study, CNN architectures such as VGG-16, VGG-19, RestNet50, RestNet18 are compared, and an optimized model for feature extraction in X-ray images from various domains involving several classes is proposed. An X-ray radiography classifier with TensorFlow GPU is created executing CNN architectures and our proposed optimized model for More >

Displaying 1-10 on page 1 of 5. Per Page