Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Essential Features Preserving Dynamics of Stochastic Dengue Model

    Wasfi Shatanawi1,2,3, Ali Raza4,5,*, Muhammad Shoaib Arif4, Muhammad Rafiq6, Mairaj Bibi7, Muhammad Mohsin8

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 201-215, 2021, DOI:10.32604/cmes.2021.012111 - 22 December 2020

    Abstract Nonlinear stochastic modelling plays an important character in the different fields of sciences such as environmental, material, engineering, chemistry, physics, biomedical engineering, and many more. In the current study, we studied the computational dynamics of the stochastic dengue model with the real material of the model. Positivity, boundedness, and dynamical consistency are essential features of stochastic modelling. Our focus is to design the computational method which preserves essential features of the model. The stochastic non-standard finite difference technique is most efficient as compared to other techniques used in literature. Analysis and comparison were explored in More >

  • Open Access

    ARTICLE

    An Effective Numerical Method for the Solution of a Stochastic Coronavirus (2019-nCovid) Pandemic Model

    Wasfi Shatanawi1,2,3, Ali Raza4,5,*, Muhammad Shoaib Arif4, Kamaledin Abodayeh1, Muhammad Rafiq6, Mairaj Bibi7

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1121-1137, 2021, DOI:10.32604/cmc.2020.012070 - 26 November 2020

    Abstract Nonlinear stochastic modeling plays a significant role in disciplines such as psychology, finance, physical sciences, engineering, econometrics, and biological sciences. Dynamical consistency, positivity, and boundedness are fundamental properties of stochastic modeling. A stochastic coronavirus model is studied with techniques of transition probabilities and parametric perturbation. Well-known explicit methods such as Euler Maruyama, stochastic Euler, and stochastic Runge–Kutta are investigated for the stochastic model. Regrettably, the above essential properties are not restored by existing methods. Hence, there is a need to construct essential properties preserving the computational method. The non-standard approach of finite difference is examined More >

  • Open Access

    ARTICLE

    Residual Correction Procedure with Bernstein Polynomials for Solving Important Systems of Ordinary Differential Equations

    M. H. T. Alshbool1, W. Shatanawi2, 3, 4, *, I. Hashim5, M. Sarr1

    CMC-Computers, Materials & Continua, Vol.64, No.1, pp. 63-80, 2020, DOI:10.32604/cmc.2020.09431 - 20 May 2020

    Abstract One of the most attractive subjects in applied sciences is to obtain exact or approximate solutions for different types of linear and nonlinear systems. Systems of ordinary differential equations like systems of second-order boundary value problems (BVPs), Brusselator system and stiff system are significant in science and engineering. One of the most challenge problems in applied science is to construct methods to approximate solutions of such systems of differential equations which pose great challenges for numerical simulations. Bernstein polynomials method with residual correction procedure is used to treat those challenges. The aim of this paper… More >

  • Open Access

    ARTICLE

    Addition Formulas of Leaf Functions and Hyperbolic Leaf Functions

    Kazunori Shinohara*

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 441-473, 2020, DOI:10.32604/cmes.2020.08656 - 01 May 2020

    Abstract Addition formulas exist in trigonometric functions. Double-angle and half-angle formulas can be derived from these formulas. Moreover, the relation equation between the trigonometric function and the hyperbolic function can be derived using an imaginary number. The inverse hyperbolic function is similar to the inverse trigonometric function , such as the second degree of a polynomial and the constant term 1, except for the sign − and +. Such an analogy holds not only when the degree of the polynomial is 2, but also for higher degrees. As such, … More >

  • Open Access

    ARTICLE

    Damped and Divergence Exact Solutions for the Duffing Equation Using Leaf Functions and Hyperbolic Leaf Functions

    Kazunori Shinohara1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.3, pp. 599-647, 2019, DOI:10.31614/cmes.2019.04472

    Abstract According to the wave power rule, the second derivative of a function x(t) with respect to the variable t is equal to negative n times the function x(t) raised to the power of 2n-1. Solving the ordinary differential equations numerically results in waves appearing in the figures. The ordinary differential equation is very simple; however, waves, including the regular amplitude and period, are drawn in the figure. In this study, the function for obtaining the wave is called the leaf function. Based on the leaf function, the exact solutions for the undamped and unforced Duffing equations… More >

  • Open Access

    ARTICLE

    An Iterative Algorithm for Solving a System of Nonlinear Algebraic Equations, F(x) = 0, Using the System of ODEs with an Optimum α in x· = λ[αF + (1−α)BTF]; Bij = ∂Fi/∂xj

    Chein-Shan Liu1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.73, No.4, pp. 395-432, 2011, DOI:10.3970/cmes.2011.073.395

    Abstract In this paper we solve a system of nonlinear algebraic equations (NAEs) of a vector-form: F(x) = 0. Based-on an invariant manifold defined in the space of (x,t) in terms of the residual-norm of the vector F(x), we derive a system of nonlinear ordinary differential equations (ODEs) with a fictitious time-like variable t as an independent variable: x· = λ[αF + (1−α)BTF], where λ and α are scalars and Bij = ∂Fi/∂xj. From this set of nonlinear ODEs, we derive a purely iterative algorithm for finding the solution vector x, without having to invert the Jacobian… More >

  • Open Access

    ARTICLE

    Simple "Residual-Norm" Based Algorithms, for the Solution of a Large System of Non-Linear Algebraic Equations, which Converge Faster than the Newton’s Method

    Chein-Shan Liu1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.71, No.3, pp. 279-304, 2011, DOI:10.3970/cmes.2011.071.279

    Abstract For solving a system of nonlinear algebraic equations (NAEs) of the type: F(x)=0, or Fi(xj) = 0, i,j = 1,...,n, a Newton-like algorithm has several drawbacks such as local convergence, being sensitive to the initial guess of solution, and the time-penalty involved in finding the inversion of the Jacobian matrix ∂Fi/∂xj. Based-on an invariant manifold defined in the space of (x,t) in terms of the residual-norm of the vector F(x), we can derive a gradient-flow system of nonlinear ordinary differential equations (ODEs) governing the evolution of x with a fictitious time-like variable t as an independent variable. More >

  • Open Access

    ARTICLE

    An Enhanced Fictitious Time Integration Method for Non-Linear Algebraic Equations With Multiple Solutions: Boundary Layer, Boundary Value and Eigenvalue Problems

    Chein-Shan Liu1, Weichung Yeih2, Satya N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.59, No.3, pp. 301-324, 2010, DOI:10.3970/cmes.2010.059.301

    Abstract When problems in engineering and science are discretized, algebraic equations appear naturally. In a recent paper by Liu and Atluri, non-linear algebraic equations (NAEs) were transformed into a nonlinear system of ODEs, which were then integrated by a method labelled as the Fictitious Time Integration Method (FTIM). In this paper, the FTIM is enhanced, by using the concept of arepellorin the theory ofnonlinear dynamical systems, to situations where multiple-solutions exist. We label this enhanced method as MSFTIM. MSFTIM is applied and illustrated in this paper through solving boundary-layer problems, boundary-value problems, and eigenvalue problems with More >

  • Open Access

    ARTICLE

    A Scalar Homotopy Method for Solving an Over/Under-Determined System of Non-Linear Algebraic Equations

    Chein-Shan Liu1, Weichung Yeih2, Chung-Lun Kuo3, Satya N. Atluri4

    CMES-Computer Modeling in Engineering & Sciences, Vol.53, No.1, pp. 47-72, 2009, DOI:10.3970/cmes.2009.053.047

    Abstract Iterative algorithms for solving a system of nonlinear algebraic equations (NAEs): Fi(xj) = 0, i, j = 1,... ,n date back to the seminal work of Issac Newton. Nowadays a Newton-like algorithm is still the most popular one to solve the NAEs, due to the ease of its numerical implementation. However, this type of algorithm is sensitive to the initial guess of solution, and is expensive in terms of the computations of the Jacobian matrix ∂Fi/∂xj and its inverse at each iterative step. In addition, the Newton-like methods restrict one to construct an iteration procedure for n-variables… More >

  • Open Access

    ARTICLE

    The Fourth-Order Group Preserving Methods for the Integrations of Ordinary Differential Equations

    Hung-Chang Lee1, Chein-Shan Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.41, No.1, pp. 1-26, 2009, DOI:10.3970/cmes.2009.041.001

    Abstract The group-preserving schemes developed by Liu (2001) for integrating ordinary differential equations system were adopted the Cayley transform and Padé approximants to formulate the Lie group from its Lie algebra. However, the accuracy of those schemes is not better than second-order. In order to increase the accuracy by employing the group-preserving schemes on ordinary differential equations, according to an efficient technique developed by Runge and Kutta to raise the order of accuracy from the Euler method, we combine the Runge-Kutta method on the group-preserving schemes to obtain the higher-order numerical methods of group-preserving type. They More >

Displaying 11-20 on page 2 of 24. Per Page