Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Off-Design Simulation of a CSP Power Plant Integrated with a Waste Heat Recovery System

    T. E. Boukelia1,2,*, A. Bourouis1, M. E. Abdesselem3, M. S. Mecibah3

    Energy Engineering, Vol.120, No.11, pp. 2449-2467, 2023, DOI:10.32604/ee.2023.030183

    Abstract Concentrating Solar Power (CSP) plants offer a promising way to generate low-emission energy. However, these plants face challenges such as reduced sunlight during winter and cloudy days, despite being located in high solar radiation areas. Furthermore, their dispatch capacities and yields can be affected by high electricity consumption, particularly at night. The present work aims to develop an off-design model that evaluates the hourly and annual performances of a parabolic trough power plant (PTPP) equipped with a waste heat recovery system. The study aims to compare the performances of this new layout with those of… More >

  • Open Access

    ARTICLE

    Simulation Analysis of Flue Gas Waste Heat Utilization Retrofit Based on ORC System

    Liqing Yan1, Jiang Liu1,2,*, Guangwei Ying3, Ning Zhang4

    Energy Engineering, Vol.120, No.8, pp. 1919-1938, 2023, DOI:10.32604/ee.2023.027546

    Abstract Recovery of waste heat from boiler flue gas is an effective way to improve energy utilization efficiency. Taking a heating station heating project as an example, the existing heating system of this heating station was analyzed for its underutilized flue gas waste heat and low energy utilization rate. Rankine cycle is an effective waste heat recovery method, and a steam boiler organic Rankine cycle (ORC) cogeneration waste heat utilization method is proposed. The system model simulation is constructed and verified. First, a thermodynamic model was constructed in MATLAB and five suitable work gases were selected More > Graphic Abstract

    Simulation Analysis of Flue Gas Waste Heat Utilization Retrofit Based on ORC System

  • Open Access

    ARTICLE

    CFD-Based Optimization of a Diesel Engine Waste Heat Recycle System

    Da Li, Guodong Zhang, Ke Sun*, Shuzhan Bai, Guoxiang Li*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1479-1493, 2023, DOI:10.32604/fdmp.2023.022634

    Abstract A dedicated heat exchanger model is introduced for the optimization of heavy-duty diesel engines. The model is a prerequisite for the execution of CFD simulations, which are used to improve waste heat recovery in these systems. Several optimization methods coupled with different types of working fluids are compared in terms of exergy efficiency and heat exchanger complicity. The three considered optimization methods all lead to significant improvements in the R245fa and R1233zd systems with a comparatively low evaporation temperature. The optimal R245fa system has the highest efficiency increase (77.49%). The cyclopentane system displays the highest More >

  • Open Access

    ARTICLE

    Life Cycle Assessment Introduced by Using Nanorefrigerant of Organic Rankine Cycle System for Waste Heat Recovery

    Yuchen Yang1,2, Lin Ma1,2,*, Jie Yu1,2, Zewen Zhao1,2, Pengfei You1,2

    Journal of Renewable Materials, Vol.11, No.3, pp. 1153-1179, 2023, DOI:10.32604/jrm.2022.022719

    Abstract The use of nanorefrigerants in Organic Rankine Cycle (ORC) units is believed to affect the cycle environment performance, but backed with very few relevant studies. For this purpose, a life cycle assessment (LCA) has been performed for the ORC system using nanorefrigerant, the material and energy input, characteristic indicators and comprehensive index of environmental impact, total energy consumption and energy payback time (BPBT) of the whole life cycle of ORC system using Al2O3/R141b nanorefrigerant were calculated. Total environmental comprehensive indexes reveal that ECER-135 index decrease by 1.5% after adding 0.2% Al2O3 nanoparticles to R141b. Based on… More >

  • Open Access

    ARTICLE

    Exergy Analysis of Organic Rankine Cycles with Zeotropic Working Fluids

    Antonio Mariani, Davide Laiso, Biagio Morrone*, Andrea Unich

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 593-601, 2023, DOI:10.32604/fdmp.2022.022524

    Abstract Waste heat recovery is one of the possible solutions to improve the efficiency of internal combustion engines. Instead of wasting the exhaust stream of an energy conversion system into the environment, its residual energy content can be usefully recovered, for example in Organic Rankine Cycles (ORC). This technology has been largely consolidated in stationary power plants but not yet for mobile applications, such as road transport, due to the limitations in the layout and to the constraints on the size and weight of the ORC system. An ORC system installed on the exhaust line of… More > Graphic Abstract

    Exergy Analysis of Organic Rankine Cycles with Zeotropic Working Fluids

  • Open Access

    ARTICLE

    Optimization Study on Regenerative Organic Rankine Cycle (ORC) with Heat Source of Low-Grade Steam

    Zhao Wang1, Su Yan1, Mingfeng Zhu1, Wen Zhu1, Han Zhang2, Xiang Gou2,*

    Energy Engineering, Vol.119, No.6, pp. 2569-2584, 2022, DOI:10.32604/ee.2022.020644

    Abstract Aiming at improving the performance of Organic Rankine Cycle (ORC) system with low-grade steam as heat source, this work studied and optimized the main operating parameters of the ORC system. The effects of evaporation temperature, superheat degree, condensation temperature and regenerator pinch temperature difference on the system performance were obtained. The optimization for the operating parameters is based on the indicators of specific net power output, waste heat pollution, cycle exergy efficiency, and total UA value (the product of overall heat transfer coefficient and heat transfer area of heat exchanger). The results show that the More >

  • Open Access

    ARTICLE

    Thermodynamic Investigation of a Solar Energy Cogeneration Plant Using an Organic Rankine Cycle in Supercritical Conditions

    Larbi Afif*, Nahla Bouaziz

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1243-1251, 2022, DOI:10.32604/fdmp.2022.021831

    Abstract In the present work, a novel Organic Rankine Cycle (ORC) configuration is used for a low-grade heat source cogeneration plant. An investigation is conducted accordingly into the simultaneous production of electricity and cold. The proposed configuration relies on concentrated solar power (as heat source) and ambient air (for cooling). Furthermore, two gas ejectors are added to the system in order to optimize the thermodynamic efficiency of the organic Rankine cycle. The results show that the thermodynamic and geometric parameters related to these ejectors have an important effect on the overall system performances. In order to More >

  • Open Access

    ARTICLE

    Performance Analysis of an Organic Rankine Cycle with a Preheated Ejector

    Kaiyong Hu1,*, Yumeng Zhang1, Tianrun Zhang1, Dequan Zhang2,*, Zhaoxian Yang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 1183-1193, 2022, DOI:10.32604/fdmp.2022.019787

    Abstract The so-called organic Rankine cycle (ORC) is an effective technology allowing heat recovery from lower temperature sources. In the present study, to improve its thermal efficiency, a preheated ejector using exhaust steam coming from the expander is integrated in the cycle (EPORC). Considering net power output, pump power, and thermal efficiency, the proposed system is compared with the basic ORC. The influence of the ejector ratio (ER) of the preheated ejector on the system performances is also investigated. Results show that the net power output of the EPORC is higher than that of the basic… More >

  • Open Access

    ARTICLE

    Experimental Investigation of Organic Rankine Cycle (ORC) for Low Temperature Geothermal Fluid: Effect of Pump Rotation and R-134 Working Fluid in Scroll-Expander

    Nugroho Agung Pambudi1,*, Santiko Wibowo1, Ranto1, Lip Huat Saw2

    Energy Engineering, Vol.118, No.5, pp. 1565-1576, 2021, DOI:10.32604/EE.2021.016642

    Abstract Organic Rankine Cycle (ORC) is one of the solutions to utilize a low temperature geothermal fluid for power generation. The ORC system can be placed at the exit of the separator to extract energy from brine. Furthermore, one of the main components of the system and very important is the pump. Therefore, in this research, the pump rotation is examined to investigate the effect on power output and energy efficiency for low temperature geothermal fluid. The rotation is determined by using an inverter with the following frequencies: 7.5, 10, 12.5, 15 and 17.5 Hz, respectively.… More >

  • Open Access

    ARTICLE

    Analysis of Solar Direct-Driven Organic Rankine Cycle Powered Vapor Compression Cooling System Combined with Electric Motor for Office Building Air-Conditioning

    Xiang Xiao1, Wei Zhao1, Wei Wang1, Wei Zhang1, Xianbiao Bu2, Lingbao Wang2,*, Huashan Li2

    Energy Engineering, Vol.118, No.1, pp. 89-101, 2021, DOI:10.32604/EE.2020.014016

    Abstract Solar energy powered organic Rankine cycle vapor compression cycle (ORC-VCC) is a good alternative to convert solar heat into a cooling effect. In this study, an ORC-VCC system driven by solar energy combined with electric motor is proposed to ensure smooth operation under the conditions that solar radiation is unstable and discontinuous, and an office building located in Guangzhou, China is selected as a case study. The results show that beam solar radiation and generation temperature have considerable effects on the system performance. There is an optimal generation temperature at which the system achieves optimum More >

Displaying 1-10 on page 1 of 12. Per Page