Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Purmorphamine Promotes Matrix Mineralization and Cytoskeletal Changes in Human Umbilical Cord Mesenchymal Stem Cells

    Syed A Jamal*

    Molecular & Cellular Biomechanics, Vol.10, No.4, pp. 267-273, 2013, DOI:10.3970/mcb.2013.010.267

    Abstract Human Umbilical Cord Mesenchymal Stem Cells (hUCMSCs) were subjected to in vitro osteogenic differentiation using a novel combination of signaling molecules including BMP-2 and purmorphamine. Differentiation outcomes were assessed by calcein staining and by microscopic examination of the cytoskeleton. Calcein staining showed appreciable degree of calcium mineralization in cell culture, and changes in the morphological attributes of differentiating cells were observed vis-a-vis the actin cytoskeleton. Finally, positive calcein staining, altered cytoskeletal profile, and stress fiber formation in treated cells demonstrated, for the first time, a potentially synergistic interplay between BMP-2 and the hedgehog agonist, purmorphamine. This study lends support to… More >

  • Open Access

    ARTICLE

    Focal Adhesion Kinase Signaling Controls Cyclic Tensile Strain Enhanced Collagen I-Induced Osteogenic Differentiation of Human Mesenchymal Stem Cells

    Donald F. Ward Jr.*, William A. Williams*, Nicole E. Schapiro*, Samuel R. Christy*, Genevieve L. Weber*, Megan Salt, Robert F. Klees*, Adele Boskey, George E. Plopper ∗,‡

    Molecular & Cellular Biomechanics, Vol.4, No.4, pp. 177-188, 2007, DOI:10.3970/mcb.2007.004.177

    Abstract Focal adhesion kinase (FAK) is a key integrator of integrin-mediated signals from the extracellular matrix to the cytoskeleton and downstream signaling molecules. FAK is activated by phosphorylation at specific tyrosine residues, which then stimulate downstream signaling including the ERK1/2 pathway, leading to a variety of cellular responses. In this study, we examined the effects of FAK point mutations at tyrosine residues (Y397, Y925, Y861, and Y576/7) on osteogenic differentiation of human mesenchymal stem cells exposed to collagen I and cyclic tensile strain. Our results demonstrate that FAK signaling emanating from Y397, Y925, and to a lesser extent Y576/7, but not… More >

Displaying 11-20 on page 2 of 12. Per Page