Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Chinese DeepSeek: Performance of Various Oversampling Techniques on Public Perceptions Using Natural Language Processing

    Anees Ara1, Muhammad Mujahid1, Amal Al-Rasheed2,*, Shaha Al-Otaibi2, Tanzila Saba1

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2717-2731, 2025, DOI:10.32604/cmc.2025.065566 - 03 July 2025

    Abstract DeepSeek Chinese artificial intelligence (AI) open-source model, has gained a lot of attention due to its economical training and efficient inference. DeepSeek, a model trained on large-scale reinforcement learning without supervised fine-tuning as a preliminary step, demonstrates remarkable reasoning capabilities of performing a wide range of tasks. DeepSeek is a prominent AI-driven chatbot that assists individuals in learning and enhances responses by generating insightful solutions to inquiries. Users possess divergent viewpoints regarding advanced models like DeepSeek, posting both their merits and shortcomings across several social media platforms. This research presents a new framework for predicting… More >

  • Open Access

    ARTICLE

    Machine Learning and Synthetic Minority Oversampling Techniques for Imbalanced Data: Improving Machine Failure Prediction

    Yap Bee Wah1,5,*, Azlan Ismail1,2, Nur Niswah Naslina Azid3, Jafreezal Jaafar4, Izzatdin Abdul Aziz4, Mohd Hilmi Hasan4, Jasni Mohamad Zain1,2

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4821-4841, 2023, DOI:10.32604/cmc.2023.034470 - 29 April 2023

    Abstract Prediction of machine failure is challenging as the dataset is often imbalanced with a low failure rate. The common approach to handle classification involving imbalanced data is to balance the data using a sampling approach such as random undersampling, random oversampling, or Synthetic Minority Oversampling Technique (SMOTE) algorithms. This paper compared the classification performance of three popular classifiers (Logistic Regression, Gaussian Naïve Bayes, and Support Vector Machine) in predicting machine failure in the Oil and Gas industry. The original machine failure dataset consists of 20,473 hourly data and is imbalanced with 19945 (97%) ‘non-failure’ and… More >

  • Open Access

    ARTICLE

    Dealing with the Class Imbalance Problem in the Detection of Fake Job Descriptions

    Minh Thanh Vo1, Anh H. Vo2, Trang Nguyen3, Rohit Sharma4, Tuong Le2,5,*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 521-535, 2021, DOI:10.32604/cmc.2021.015645 - 22 March 2021

    Abstract In recent years, the detection of fake job descriptions has become increasingly necessary because social networking has changed the way people access burgeoning information in the internet age. Identifying fraud in job descriptions can help jobseekers to avoid many of the risks of job hunting. However, the problem of detecting fake job descriptions comes up against the problem of class imbalance when the number of genuine jobs exceeds the number of fake jobs. This causes a reduction in the predictability and performance of traditional machine learning models. We therefore present an efficient framework that uses… More >

Displaying 1-10 on page 1 of 3. Per Page