Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    Modeling of Random Bimodal Structures of Composites (Application to Solid Propellants): I. Simulation of Random Packs

    V.A. Buryachenko1,2, T.L. Jackson2,3, G. Amadio3

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.5, pp. 379-416, 2012, DOI:10.3970/cmes.2012.085.379

    Abstract We consider a composite medium, which consists of a homogeneous matrix containing a statistically homogeneous set of multimodal spherical inclusions. This model is used to represent the morphology of heterogeneous solid propellants (HSP) that are widely used in the rocket industry. The Lubachevsky-Stillinger algorithm is used to generate morphological models of HSP with large polydisperse packs of spherical inclusions. We modify the algorithm by proposing a random shaking procedure that leads to the stabilization of a statistical distribution of the simulated structure that is homogeneous, highly mixed, and protocol independent (in sense that the statistical More >

  • Open Access

    ARTICLE

    Model of Random Spatial Packing of Rigid Spheres with Controlled Macroscopic Homogenity

    J. Zidek1 , J. Kucera1, J. Jancar1

    CMC-Computers, Materials & Continua, Vol.16, No.1, pp. 51-74, 2010, DOI:10.3970/cmc.2010.016.051

    Abstract It has been shown that in particulate filled composites, a cross-property relationship exists between various transport properties (e.g., electrical conductivity, mechanical reinforcement, gas permeation) of a macroscale composite. Thus, knowledge of the effective mechanical properties of a composite immediately places bounds on its electrical conductivity or gas permeation behavior. Using these bounds allows us to predict the phase dispersion state that optimizes one or multiple properties of the composite and, thus, the knowledge of how spatial arrangement of filler particles at their given content affects physical properties of the composite can be valuable. In this More >

  • Open Access

    ARTICLE

    Property Predictions for Packed Columns Using Monte Carlo and Discrete Element Digital Packing Algorithms

    C. Xu1, X. Jia2, R. A. Williams2, E. H. Stitt3, M. Nijemeisland3, S. El-Bachir4, A. J. Sederman4, L. F. Gladden4

    CMES-Computer Modeling in Engineering & Sciences, Vol.23, No.2, pp. 117-126, 2008, DOI:10.3970/cmes.2008.023.117

    Abstract Existing theories and computer models for packed columns are either incapable of handling complex pellet shapes or based on over-simplified packing geometry. A digital packing algorithm, namely DigiPac, has recently been developed to fill the gap. It is capable of packing of particles of any shapes and sizes in a container of arbitrary geometry, and is a first step towards a practical computational tool for reliable predictions of packed column properties based on the actual pellet shapes. DigiPac can operate in two modes: a Monte Carlo mode in which particles undergo directional diffusive motions; and… More >

  • Open Access

    ARTICLE

    Computer Simulation of Random Sphere Packing in an Arbitrarily Shaped Container

    S.X. Li1, L. Zhao1, Y.W. Liu2

    CMC-Computers, Materials & Continua, Vol.7, No.2, pp. 109-118, 2008, DOI:10.3970/cmc.2008.007.109

    Abstract Most simulations of random sphere packing concern a cubic or cylindric container with periodic boundary, containers of other shapes are rarely studied. In this paper, a new relaxation algorithm with pre-expanding procedure for random sphere packing in an arbitrarily shaped container is presented. Boundaries of the container are simulated by overlapping spheres which covers the boundary surface of the container. We find 0.4~0.6 of the overlap rate is a proper value for boundary spheres. The algorithm begins with a random distribution of small internal spheres. Then the expansion and relaxation procedures are performed alternately to… More >

  • Open Access

    ABSTRACT

    Interphase Effect on Damping in Fiber Reinforced Composites

    Pramod Kumar1, Rakesh Chandra1, S.P. Singh2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.4, No.2, pp. 67-72, 2007, DOI:10.3970/icces.2007.004.067

    Abstract Polymers composite are modeled as fiber, interphase and matrix. Interphase properties are very crucial for bonding between fiber and matrix. Interphase can be strong and weak depending upon its properties. Damping of composite material depends on interphase properties and required damping can be obtained by varying the properties of interphase. In this paper three phase mathematical model has been proposed for the evaluation of damping incorporating the effect of fiber packing. Effect of interphase has been analysed for the longitudinal loss factor, transverse loss factor, transverse shear loss factor and longitudinal shear loss factor. Results More >

  • Open Access

    ARTICLE

    Computational Simulation of Localized Damage by Finite Element Remeshing based on Bubble Packing Method

    Soon Wan Chung1, Yoo Jin Choi1, Seung Jo Kim1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.6, pp. 707-718, 2003, DOI:10.3970/cmes.2003.004.707

    Abstract In this paper, an automatic finite element remeshing algorithm based on the bubble packing method is utilized for the purpose of numerical simulations of localized damage, because fine meshes are needed to represent the gradually concentrated damage. The bubble packing method introduces two parameters that easily control the remeshing criterion and the new mesh size. The refined area is determined by \textit {a posteriori} error estimation utilizing the value obtained from Superconvergent Patch Recovery. The isotropic ductile damage theory, founded on continuum damage mechanics, is used for this damage analysis. It was successfully shown in More >

  • Open Access

    ARTICLE

    To Generate Good Triangular Meshes, Conforming to Control Spacing Requirements

    Xiang-YangLi1, Shang-Hua Teng2, Peng-Jun Wan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.1, pp. 97-116, 2001, DOI:10.3970/cmes.2001.002.097

    Abstract To conduct numerical simulations by finite element methods, we often need to generate a high quality mesh, yet with a smaller number of elements. Moreover, the size of each of the elements in the mesh should be approximately equal to a given size requirement. Li et al. recently proposed a new method, named biting, which combines the strengths of advancing front and sphere packing. It generates high quality meshes with a theoretical guarantee. In this paper, we show that biting squares instead of circles not only generates high quality meshes but also has the following advantages. It More >

Displaying 11-20 on page 2 of 17. Per Page