Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20)
  • Open Access

    ARTICLE

    Improving Heat Transfer in Parabolic Trough Solar Collectors by Magnetic Nanofluids

    Ritesh Singh1, Abhishek Gupta1, Akshoy Ranjan Paul1, Bireswar Paul1, Suvash C. Saha2,*

    Energy Engineering, Vol.121, No.4, pp. 835-848, 2024, DOI:10.32604/ee.2024.046849

    Abstract A parabolic trough solar collector (PTSC) converts solar radiation into thermal energy. However, low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants. Thermal performance of PTSC is enhanced in this study by incorporating magnetic nanoparticles into the working fluid. The circular receiver pipe, with dimensions of 66 mm diameter, 2 mm thickness, and 24 m length, is exposed to uniform temperature and velocity conditions. The working fluid, Therminol-66, is supplemented with Fe3O4 magnetic nanoparticles at concentrations ranging from 1% to 4%. The findings demonstrate that the inclusion of nanoparticles increases the convective heat… More >

  • Open Access

    ARTICLE

    Investigative Review of Design Techniques of Parabolic Trough Solar Collectors

    Roba Tarek AbdelFatah*, Irene S. Fahim, Mohamed Mahran Kasem

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 317-339, 2024, DOI:10.32604/fhmt.2023.044706

    Abstract Parabolic trough solar collectors (PTCs) are among the most cost-efficient solar thermal technologies. They have several applications, such as feed heaters, boilers, steam generators, and electricity generators. A PTC is a concentrated solar power system that uses parabolic reflectors to focus sunlight onto a tube filled with heat-transfer fluid. PTCs performance can be investigated using optical and thermal mathematical models. These models calculate the amount of energy entering the receiver, the amount of usable collected energy, and the amount of heat loss due to convection and radiation. There are several methods and configurations that have been developed so far; however,… More > Graphic Abstract

    Investigative Review of Design Techniques of Parabolic Trough Solar Collectors

  • Open Access

    ARTICLE

    Off-Design Simulation of a CSP Power Plant Integrated with a Waste Heat Recovery System

    T. E. Boukelia1,2,*, A. Bourouis1, M. E. Abdesselem3, M. S. Mecibah3

    Energy Engineering, Vol.120, No.11, pp. 2449-2467, 2023, DOI:10.32604/ee.2023.030183

    Abstract Concentrating Solar Power (CSP) plants offer a promising way to generate low-emission energy. However, these plants face challenges such as reduced sunlight during winter and cloudy days, despite being located in high solar radiation areas. Furthermore, their dispatch capacities and yields can be affected by high electricity consumption, particularly at night. The present work aims to develop an off-design model that evaluates the hourly and annual performances of a parabolic trough power plant (PTPP) equipped with a waste heat recovery system. The study aims to compare the performances of this new layout with those of the conventional Andasol 1 plant,… More >

  • Open Access

    ARTICLE

    NUMERICAL THERMAL STUDY OF HEAT TRANSFER ENHANCEMENT IN LAMINAR-TURBULENT TRANSITION FLOW THROUGH ABSORBER PIPE OF PARABOLIC SOLAR TROUGH COLLECTOR SYSTEM

    Marwa M. Ibrahima,*, Mohamed Mahran Kasemb,c

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-11, 2021, DOI:10.5098/hmt.17.20

    Abstract Currently electricity generation technologies by thermal energy conversions become strong demand. The objective of this paper is to present a novel thermal study of absorber/receiver circular pipe of parabolic trough solar collector system for laminar and turbulent (k-ɛ model) fluids flow as well as two-dimensional numerical simulation is performed using CFD ANSYS FLUENT software. Significant improvements in heat transfer and velocity were discovered; the pattern of temperature distribution over the pipe absorber was displayed, and velocity vectors, pressure contours, and temperature contours were studied. The impact of increasing the heat flux towards the pipe wall is discussed. Heat transfer coefficient… More >

  • Open Access

    ARTICLE

    EXPERIMENTAL INVESTIGATION OF A HUMIDIFICATIONDEHUMIDIFICATION DESALINATION UNIT WORKING UNDER BAGHDAD CONDITIONS

    Zahra F. Hussaina,*, Ahmed J. Hamedb, Abdul Hadi N. Khalifab, Mohanad F. Hassanb, Fawaz A.Najimc,†

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-11, 2022, DOI:10.5098/hmt.18.14

    Abstract At places far from the energy grid lines, freshwater is sometimes needed. Consequently, even countries with rich energy resources, such as the Arabian Gulf countries, have shown strong interest in desalination processes that often use renewable energy sources. In the present work, a desalination unit depending on the humidification-dehumidification principles is fabricated and tested under Baghdad, Iraq conditions. The HDH system under study consists of 6 parabolic trough solar collectors (PTSC) of a total aperture area of 8.772 m2 , the humidifier, and the dehumidifier and a tracking system. The effects of salty water flow rate and the HDH air-water… More >

  • Open Access

    ARTICLE

    A Weighted Average Finite Difference Scheme for the Numerical Solution of Stochastic Parabolic Partial Differential Equations

    Dumitru Baleanu1,2,3, Mehran Namjoo4, Ali Mohebbian4, Amin Jajarmi5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1147-1163, 2023, DOI:10.32604/cmes.2022.022403

    Abstract In the present paper, the numerical solution of Itô type stochastic parabolic equation with a time white noise process is imparted based on a stochastic finite difference scheme. At the beginning, an implicit stochastic finite difference scheme is presented for this equation. Some mathematical analyses of the scheme are then discussed. Lastly, to ascertain the efficacy and accuracy of the suggested technique, the numerical results are discussed and compared with the exact solution. More >

  • Open Access

    ARTICLE

    Numerical Study of Temperature and Electric Field Effects on the Total Optical Absorption Coefficient in the Presence of Optical Inter-Conduction-Subband Transitions in InGaN/GaN Single Parabolic Quantum Wells

    Redouane En-nadir1,*, Haddou El-ghazi2, Anouar Jorio1, Izeddine Zorkani1, Hassan Abboudi1, Fath Allah Jabouti1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1253-1261, 2022, DOI:10.32604/fdmp.2022.021759

    Abstract In this paper, we theoretically investigate the total optical coefficient (TOAC) considering 1S-2P and 2S-2P conduction subband transitions in a single parabolic quantum well (SPQW) with an on-center hydrogen-like impurity. Within the framework of the effective-mass approximation, the Schrödinger equation is solved numerically to obtain the eigenvalues and their corresponding eigenvectors using the finite difference method. The calculations are performed for finite confinement potential height, taking into account the dielectric and effective mass mismatches between GaN and InGaN materials under the considered electric field and temperature effects. The temperature dependence of the effective mass, dielectric constant and band gap energy… More > Graphic Abstract

    Numerical Study of Temperature and Electric Field Effects on the Total Optical Absorption Coefficient in the Presence of Optical Inter-Conduction-Subband Transitions in InGaN/GaN Single Parabolic Quantum Wells

  • Open Access

    ARTICLE

    Solvability of the Nonlocal Inverse Parabolic Problem and Numerical Results

    M. J. Huntul1,*, Taki-Eddine Oussaeif2

    Computer Systems Science and Engineering, Vol.40, No.3, pp. 1109-1126, 2022, DOI:10.32604/csse.2022.020175

    Abstract In this paper, we consider the unique solvability of the inverse problem of determining the right-hand side of a parabolic equation whose leading coefficient depends on time variable under nonlocal integral overdetermination condition. We obtain sufficient conditions for the unique solvability of the inverse problem. The existence and uniqueness of the solution of the inverse parabolic problem upon the data are established using the fixed point theorem. This inverse problem appears extensively in the modelling of various phenomena in engineering and physics. For example, seismology, medicine, fusion welding, continuous casting, metallurgy, aircraft, oil and gas production during drilling and operation… More >

  • Open Access

    ARTICLE

    Reconstructing the Time-Dependent Thermal Coefficient in 2D Free Boundary Problems

    M. J. Huntul*

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3681-3699, 2021, DOI:10.32604/cmc.2021.016036

    Abstract The inverse problem of reconstructing the time-dependent thermal conductivity and free boundary coefficients along with the temperature in a two-dimensional parabolic equation with initial and boundary conditions and additional measurements is, for the first time, numerically investigated. This inverse problem appears extensively in the modelling of various phenomena in engineering and physics. For instance, steel annealing, vacuum-arc welding, fusion welding, continuous casting, metallurgy, aircraft, oil and gas production during drilling and operation of wells. From literature we already know that this inverse problem has a unique solution. However, the problem is still ill-posed by being unstable to noise in the… More >

  • Open Access

    ARTICLE

    A Comparative Numerical Study of Parabolic Partial Integro-Differential Equation Arising from Convection-Diffusion

    Kamil Khan1, Arshed Ali1,*, Fazal-i-Haq2, Iltaf Hussain3, Nudrat Amir4

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.2, pp. 673-692, 2021, DOI:10.32604/cmes.2021.012730

    Abstract This article studies the development of two numerical techniques for solving convection-diffusion type partial integro-differential equation (PIDE) with a weakly singular kernel. Cubic trigonometric B-spline (CTBS) functions are used for interpolation in both methods. The first method is CTBS based collocation method which reduces the PIDE to an algebraic tridiagonal system of linear equations. The other method is CTBS based differential quadrature method which converts the PIDE to a system of ODEs by computing spatial derivatives as weighted sum of function values. An efficient tridiagonal solver is used for the solution of the linear system obtained in the first method… More >

Displaying 1-10 on page 1 of 20. Per Page