Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access

    ARTICLE

    Space-time Discontinuous Galerkin Method Based on a New Generalized Flux Vector Splitting Method for Multi-dimensional Nonlinear Hyperbolic Systems

    P.A. Trapper1, P.Z. Bar-Yoseph2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.1, pp. 19-47, 2014, DOI:10.3970/cmes.2014.103.019

    Abstract The space-time discontinuous Galerkin method for multi-dimensional nonlinear hyperbolic systems is enhanced with a generalized technique for splitting a flux vector that is not limited to the homogeneity property of the flux. This technique, based on the flux’s characteristic decomposition, extends the scope of the method’s applicability to a wider range of problems, including elastodynamics. The method is used for numerical solution of a number of representative problems based on models of vibrating string and vibrating rod that involve the propagation of a sharp front through the solution domain. More >

  • Open Access

    ARTICLE

    A Wavelet Method for Solving Nonlinear Time-Dependent Partial Differential Equations

    Xiaojing Liu1, Jizeng Wang1,2, Youhe Zhou1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.3, pp. 225-238, 2013, DOI:10.32604/cmes.2013.094.225

    Abstract A wavelet method is proposed for solving a class of nonlinear timedependent partial differential equations. Following this method, the nonlinear equations are first transformed into a system of ordinary differential equations by using the modified wavelet Galerkin method recently developed by the authors. Then, the classical fourth-order explicit Runge-Kutta method is employed to solve the resulting system of ordinary differential equations. To justify the present method, the coupled viscous Burgers’ equations are solved as examples, results demonstrate that the proposed wavelet algorithm have a much better accuracy and efficiency than many existing numerical methods, and the order of convergence of… More >

  • Open Access

    ARTICLE

    Numerical solution of fractional partial differential equations using Haar wavelets

    Lifeng Wang1, Zhijun Meng1, Yunpeng Ma1, Zeyan Wu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.4, pp. 269-287, 2013, DOI:10.3970/cmes.2013.091.269

    Abstract In this paper, we present a computational method for solving a class of fractional partial differential equations which is based on Haar wavelets operational matrix of fractional order integration. We derive the Haar wavelets operational matrix of fractional order integration. Haar wavelets method is used because its computation is sample as it converts the original problem into Sylvester equation. Finally, some examples are included to show the implementation and accuracy of the approach. More >

  • Open Access

    ARTICLE

    Haar Wavelet Operational Matrix Method for Solving Fractional Partial Differential Equations

    Mingxu Yi1, Yiming Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.3, pp. 229-244, 2012, DOI:10.3970/cmes.2012.088.229

    Abstract In this paper, Haar wavelet operational matrix method is proposed to solve a class of fractional partial differential equations. We derive the Haar wavelet operational matrix of fractional order integration. Meanwhile, the Haar wavelet operational matrix of fractional order differentiation is obtained. The operational matrix of fractional order differentiation is utilized to reduce the initial equation to a Sylvester equation. Some numerical examples are included to demonstrate the validity and applicability of the approach. More >

  • Open Access

    ARTICLE

    An Iterative Algorithm for Solving a System of Nonlinear Algebraic Equations, F(x) = 0, Using the System of ODEs with an Optimum α in x· = λ[αF + (1−α)BTF]; Bij = ∂Fi/∂xj

    Chein-Shan Liu1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.73, No.4, pp. 395-432, 2011, DOI:10.3970/cmes.2011.073.395

    Abstract In this paper we solve a system of nonlinear algebraic equations (NAEs) of a vector-form: F(x) = 0. Based-on an invariant manifold defined in the space of (x,t) in terms of the residual-norm of the vector F(x), we derive a system of nonlinear ordinary differential equations (ODEs) with a fictitious time-like variable t as an independent variable: x· = λ[αF + (1−α)BTF], where λ and α are scalars and Bij = ∂Fi/∂xj. From this set of nonlinear ODEs, we derive a purely iterative algorithm for finding the solution vector x, without having to invert the Jacobian (tangent stiffness matrix)… More >

  • Open Access

    ARTICLE

    Simple "Residual-Norm" Based Algorithms, for the Solution of a Large System of Non-Linear Algebraic Equations, which Converge Faster than the Newton’s Method

    Chein-Shan Liu1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.71, No.3, pp. 279-304, 2011, DOI:10.3970/cmes.2011.071.279

    Abstract For solving a system of nonlinear algebraic equations (NAEs) of the type: F(x)=0, or Fi(xj) = 0, i,j = 1,...,n, a Newton-like algorithm has several drawbacks such as local convergence, being sensitive to the initial guess of solution, and the time-penalty involved in finding the inversion of the Jacobian matrix ∂Fi/∂xj. Based-on an invariant manifold defined in the space of (x,t) in terms of the residual-norm of the vector F(x), we can derive a gradient-flow system of nonlinear ordinary differential equations (ODEs) governing the evolution of x with a fictitious time-like variable t as an independent variable. We can prove… More >

  • Open Access

    ARTICLE

    A New Insight into the Differential Quadrature Method in Solving 2-D Elliptic PDEs

    Ying-Hsiu Shen1, Chein-Shan Liu1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.71, No.2, pp. 157-178, 2011, DOI:10.3970/cmes.2011.071.157

    Abstract When the local differential quadrature (LDQ) has been successfully applied to solve two-dimensional problems, the global method of DQ still has a problem by requiring to solve the inversions of ill-posed matrices. Previously, when one uses (n-1)th order polynomial test functions to determine the weighting coefficients with n grid points, the resultant n ×n Vandermonde matrix is highly ill-conditioned and its inversion is hard to solve. Now we use (m-1)th order polynomial test functions by n grid points that the size of Vandermonde matrix is m×n, of which m is much less than n. We find that the (m-1)th order… More >

  • Open Access

    ARTICLE

    Numerical Simulations for Coupled Pair of Diffusion Equations by MLPG Method

    S. Abbasbandy1,2, V. Sladek3, A. Shirzadi1, J. Sladek3

    CMES-Computer Modeling in Engineering & Sciences, Vol.71, No.1, pp. 15-38, 2011, DOI:10.3970/cmes.2011.071.015

    Abstract This paper deals with the development of a new method for solution of initial-boundary value problems governed by a couple of nonlinear diffusion equations occurring in the theory of self-organization in non-equilibrium systems. The time dependence is treated by linear interpolation using the finite difference method and the semi-discrete partial differential equations are considered in a weak sense by using the local integral equation method with approximating 2-d spatial variations of the field variables by the Moving Least Squares. The evaluation techniques are discussed and the applicability of the presented method is demonstrated on two illustrative examples with exact solutions… More >

  • Open Access

    ARTICLE

    Fictitious Time Integration Method of Fundamental Solutions with Chebyshev Polynomials for Solving Poisson-type Nonlinear PDEs

    Chia-Cheng Tsai1, Chein-Shan Liu2, Wei-Chung Yeih3

    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.2, pp. 131-152, 2010, DOI:10.3970/cmes.2010.056.131

    Abstract The fictitious time integration method (FTIM) previously developed by Liu and Atluri (2008a) is combined with the method of fundamental solutions and the Chebyshev polynomials to solve Poisson-type nonlinear PDEs. The method of fundamental solutions with Chebyshev polynomials (MFS-CP) is an exponentially-convergent meshless numerical method which is able to solving nonhomogeneous partial differential equations if the fundamental solution and the analytical particular solutions of the considered operator are known. In this study, the MFS-CP is extended to solve Poisson-type nonlinear PDEs by using the FTIM. In the solution procedure, the FTIM is introduced to convert a Poisson-type nonlinear PDE into… More >

  • Open Access

    ARTICLE

    Solution Methods for Nonsymmetric Linear Systems with Large off-Diagonal Elements and Discontinuous Coefficients

    Dan Gordon1, Rachel Gordon2

    CMES-Computer Modeling in Engineering & Sciences, Vol.53, No.1, pp. 23-46, 2009, DOI:10.3970/cmes.2009.053.023

    Abstract Linear systems with very large off-diagonal elements and discontinuous coefficients (LODC systems) arise in some modeling cases, such as those involving heterogeneous media. Such problems are usually solved by domain decomposition methods, but these can be difficult to implement on unstructured grids or when the boundaries between subdomains have a complicated geometry. Gordon and Gordon have shown that Björck and Elfving's (sequential) CGMN algorithm and their own block-parallel CARP-CG are very robust and efficient on strongly convection dominated cases (but without discontinuous coefficients). They have also shown that scaling the equations by dividing each equation by the L2-norm of its… More >

Displaying 21-30 on page 3 of 34. Per Page