Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Different Effects of Wet and Dry Grinding on the Activation of Iron Ore Tailings

    Yingchun Yang1,*, Liqing Chen1, Yuguang Mao2

    Journal of Renewable Materials, Vol.9, No.12, pp. 2261-2276, 2021, DOI:10.32604/jrm.2021.015793

    Abstract Improving the activity of Iron Ore Tailings (IOTs) to utilize them as a mineral admixture in cement-based minerals is still challenging. In this paper, the wet grinding technology was employed to stimulate the activity of IOTs, and the traditional dry grinding method was used as a reference. The effect of wet grinding on the activation of IOTs was evaluated through ion leaching from an alkaline solution and the reactivity index. Additionally, a detailed comparison between Dry-grinding Iron Ore Tailings (DIOTs) and Wet-grinding Iron Ore Tailings (WIOTs) was made. This comparison was based on particle characteristics, crystal structures, chemical structure, and… More > Graphic Abstract

    Different Effects of Wet and Dry Grinding on the Activation of Iron Ore Tailings

  • Open Access

    ARTICLE

    Microparticle Effect of Carbon Dioxide Hydrate Crystal Nucleus in Reaction Kettle

    Yujie Bai1,*, Youquan Huang3, Guangsheng Cao1, Xiaohan Nan1, Qingchao Cheng1, Lei Wang2, Tong Du4

    Journal of Renewable Materials, Vol.9, No.4, pp. 651-669, 2021, DOI:10.32604/jrm.2021.014479

    Abstract This study analyzed the partial effect of carbon dioxide hydrate in reaction kettle experiments. The particle and bubble characteristics of the crystal nucleus during carbon dioxide hydrate decomposition were observed under the microscope. The results showed that in the temperature range of 0.5°C–3.5°C, the pressure range of 3 MPa– 5.5 MPa, phase characteristics in the reaction kettle changed in a complex fashion during carbon dioxide hydrate formation. During hydrate decomposition, numerous carbon dioxide bubbles were produced, mainly by precipitation at high temperatures or in the hydrate cage structure. The hydrate crystal nucleus initially exhibited fluidity in the reaction. However, as… More >

Displaying 1-10 on page 1 of 2. Per Page