Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (160)
  • Open Access

    ARTICLE

    Design Optimization of Permanent Magnet Eddy Current Coupler Based on an Intelligence Algorithm

    Dazhi Wang*, Pengyi Pan, Bowen Niu

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1535-1555, 2023, DOI:10.32604/cmc.2023.042286

    Abstract The permanent magnet eddy current coupler (PMEC) solves the problem of flexible connection and speed regulation between the motor and the load and is widely used in electrical transmission systems. It provides torque to the load and generates heat and losses, reducing its energy transfer efficiency. This issue has become an obstacle for PMEC to develop toward a higher power. This paper aims to improve the overall performance of PMEC through multi-objective optimization methods. Firstly, a PMEC modeling method based on the Levenberg-Marquardt back propagation (LMBP) neural network is proposed, aiming at the characteristics of the complex input-output relationship and… More >

  • Open Access

    ARTICLE

    Digital Image Encryption Algorithm Based on Double Chaotic Map and LSTM

    Luoyin Feng1,*, Jize Du2, Chong Fu1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1645-1662, 2023, DOI:10.32604/cmc.2023.042630

    Abstract In the era of network communication, digital image encryption (DIE) technology is critical to ensure the security of image data. However, there has been limited research on combining deep learning neural networks with chaotic mapping for the encryption of digital images. So, this paper addresses this gap by studying the generation of pseudo-random sequences (PRS) chaotic signals using dual logistic chaotic maps. These signals are then predicted using long and short-term memory (LSTM) networks, resulting in the reconstruction of a new chaotic signal. During the research process, it was discovered that there are numerous training parameters associated with the LSTM… More >

  • Open Access

    ARTICLE

    An Improved Lung Cancer Segmentation Based on Nature-Inspired Optimization Approaches

    Shazia Shamas1, Surya Narayan Panda1,*, Ishu Sharma1,*, Kalpna Guleria1, Aman Singh2,3,4, Ahmad Ali AlZubi5, Mallak Ahmad AlZubi6

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1051-1075, 2024, DOI:10.32604/cmes.2023.030712

    Abstract The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis and planning intervention. This research work addresses the major issues pertaining to the field of medical image processing while focusing on lung cancer Computed Tomography (CT) images. In this context, the paper proposes an improved lung cancer segmentation technique based on the strengths of nature-inspired approaches. The better resolution of CT is exploited to distinguish healthy subjects from those who have lung cancer. In this process, the visual challenges of the K-means are addressed with the integration of four nature-inspired swarm intelligent techniques. The techniques… More >

  • Open Access

    ARTICLE

    Optimization of CNC Turning Machining Parameters Based on Bp-DWMOPSO Algorithm

    Jiang Li, Jiutao Zhao, Qinhui Liu*, Laizheng Zhu, Jinyi Guo, Weijiu Zhang

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 223-244, 2023, DOI:10.32604/cmc.2023.042429

    Abstract Cutting parameters have a significant impact on the machining effect. In order to reduce the machining time and improve the machining quality, this paper proposes an optimization algorithm based on Bp neural network-Improved Multi-Objective Particle Swarm (Bp-DWMOPSO). Firstly, this paper analyzes the existing problems in the traditional multi-objective particle swarm algorithm. Secondly, the Bp neural network model and the dynamic weight multi-objective particle swarm algorithm model are established. Finally, the Bp-DWMOPSO algorithm is designed based on the established models. In order to verify the effectiveness of the algorithm, this paper obtains the required data through equal probability orthogonal experiments on… More >

  • Open Access

    ARTICLE

    Self-Awakened Particle Swarm Optimization BN Structure Learning Algorithm Based on Search Space Constraint

    Kun Liu1,2, Peiran Li3, Yu Zhang1,*, Jia Ren1, Xianyu Wang2, Uzair Aslam Bhatti1

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3257-3274, 2023, DOI:10.32604/cmc.2023.039430

    Abstract To obtain the optimal Bayesian network (BN) structure, researchers often use the hybrid learning algorithm that combines the constraint-based (CB) method and the score-and-search (SS) method. This hybrid method has the problem that the search efficiency could be improved due to the ample search space. The search process quickly falls into the local optimal solution, unable to obtain the global optimal. Based on this, the Particle Swarm Optimization (PSO) algorithm based on the search space constraint process is proposed. In the first stage, the method uses dynamic adjustment factors to constrain the structure search space and enrich the diversity of… More >

  • Open Access

    ARTICLE

    Adaptive Multi-Updating Strategy Based Particle Swarm Optimization

    Dongping Tian1,*, Bingchun Li1, Jing Liu1, Chen Liu1, Ling Yuan1, Zhongzhi Shi2

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2783-2807, 2023, DOI:10.32604/iasc.2023.039531

    Abstract Particle swarm optimization (PSO) is a stochastic computation technique that has become an increasingly important branch of swarm intelligence optimization. However, like other evolutionary algorithms, PSO also suffers from premature convergence and entrapment into local optima in dealing with complex multimodal problems. Thus this paper puts forward an adaptive multi-updating strategy based particle swarm optimization (abbreviated as AMS-PSO). To start with, the chaotic sequence is employed to generate high-quality initial particles to accelerate the convergence rate of the AMS-PSO. Subsequently, according to the current iteration, different update schemes are used to regulate the particle search process at different evolution stages.… More >

  • Open Access

    ARTICLE

    A Hybrid Heuristic Service Caching and Task Offloading Method for Mobile Edge Computing

    Yongxuan Sang, Jiangpo Wei*, Zhifeng Zhang, Bo Wang

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2483-2502, 2023, DOI:10.32604/cmc.2023.040485

    Abstract Computing-intensive and latency-sensitive user requests pose significant challenges to traditional cloud computing. In response to these challenges, mobile edge computing (MEC) has emerged as a new paradigm that extends the computational, caching, and communication capabilities of cloud computing. By caching certain services on edge nodes, computational support can be provided for requests that are offloaded to the edges. However, previous studies on task offloading have generally not considered the impact of caching mechanisms and the cache space occupied by services. This oversight can lead to problems, such as high delays in task executions and invalidation of offloading decisions. To optimize… More >

  • Open Access

    ARTICLE

    Intermediary RRT*-PSO: A Multi-Directional Hybrid Fast Convergence Sampling-Based Path Planning Algorithm

    Loc Q. Huynh1, Ly V. Tran1, Phuc N. K. Phan1, Zhiqiu Yu2, Son V. T. Dao1,2,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2281-2300, 2023, DOI:10.32604/cmc.2023.034872

    Abstract Path planning is a prevalent process that helps mobile robots find the most efficient pathway from the starting position to the goal position to avoid collisions with obstacles. In this paper, we propose a novel path planning algorithm–Intermediary RRT*-PSO-by utilizing the exploring speed advantages of Rapidly exploring Random Trees and using its solution to feed to a metaheuristic-based optimizer, Particle swarm optimization (PSO), for fine-tuning and enhancement. In Phase 1, the start and goal trees are initialized at the starting and goal positions, respectively, and the intermediary tree is initialized at a random unexplored region of the search space. The… More >

  • Open Access

    PROCEEDINGS

    Characterization of Mechanical Properties of CNFs and the Assembled Microfibers Through a Multi-scale Optimization-Based Inversion Method

    Shuaijun Wang1, Wenqiong Tu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09926

    Abstract Cellulose nanofibrils (CNFs) and the continuously assembled microfibers have shown transversely isotropic behavior in many studies. Due to fact that the size of CNFs and the assembled microfibers is at the nano and micro scale, respectively, the characterization of their mechanical properties is extremely challenge. That greatly hinders the accurate multi-scale modeling and design of CNFs-based materials. In our study, we have characterized the elastic constants of both CNFs microfibers and CNFs through a Multi-scale Optimization Inversion technology. Through the tensile test of CNFs microfibers reinforced resin with different volume fractions and the micromechanics model of microfibers reinforced resin, the… More >

  • Open Access

    ARTICLE

    Optimal Location and Sizing of Distributed Generator via Improved Multi-Objective Particle Swarm Optimization in Active Distribution Network Considering Multi-Resource

    Guobin He*, Rui Su, Jinxin Yang, Yuanping Huang, Huanlin Chen, Donghui Zhang, Cangtao Yang, Wenwen Li

    Energy Engineering, Vol.120, No.9, pp. 2133-2154, 2023, DOI:10.32604/ee.2023.029007

    Abstract In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization, multi-resource penetration in active distribution networks has been advancing fiercely. In particular, distributed generation (DG) based on renewable energy is critical for active distribution network operation enhancement. To comprehensively analyze the accessing impact of DG in distribution networks from various parts, this paper establishes an optimal DG location and sizing planning model based on active power losses, voltage profile, pollution emissions, and the economics of DG costs as well as meteorological conditions. Subsequently, multi-objective particle swarm optimization (MOPSO) is applied to obtain the optimal… More >

Displaying 1-10 on page 1 of 160. Per Page