Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    PROCEEDINGS

    Hierarchical Multiscale Modeling of Thaw-Induced Landslides in Permafrost

    Shiwei Zhao1,*, Hao Chen2, Jidong Zhao1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09965

    Abstract With global warming, thaw-induced landslides occur more frequently in permafrost, which not only threaten the safety of infrastructures as general geohazards but also worsen global warming due to carbon release. This work presents a novel computational framework to model thaw-induced landslides from a multiscale perspective. The proposed approach can capture the thermal-mechanical (TM) response of frozen soils at the particulate scale by using discrete element method (DEM). The micromechanics-based TM model is superior to capturing the sudden crash of soil skeletons caused by thaw-induced cementation loss between soil grains. The DEM-simulated TM response is then homogenized and directly fed into… More >

  • Open Access

    ARTICLE

    Study of Temperature Field and Structure Optimization for Runways in Permafrost Regions

    Xiaolan Liu1,*, Yixiang Chen2, Yan Zhou1, Kai Zhang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 1093-1112, 2022, DOI:10.32604/cmes.2022.018072

    Abstract Pavement construction in permafrost regions is complicated by the fact that the permafrost properties are influenced by the temperature and are extremely unstable. The numerical model for runway structures in permafrost regions is applied to analyze the time–space characteristics of the temperature field and the depth of the frozen layer. The influence of the installation layer is studied to enable structural optimization of the runway. Numerical results show that the temperature stabilization depth, low- and high-temperature interlayer response ranges, and maximum depth of the frozen layer are greater in runway engineering than in highway and railway engineering. The time history… More >

Displaying 1-10 on page 1 of 2. Per Page