Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (58)
  • Open Access

    ARTICLE

    Perfectly matched layer for acoustic waveguide modeling --- benchmark calculations and perturbation analysis

    Ya Yan Lu1, Jianxin Zhu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.22, No.3, pp. 235-248, 2007, DOI:10.3970/cmes.2007.022.235

    Abstract The perfectly matched layer (PML) is a widely used technique for truncating unbounded domains in numerical simulations of wave propagation problems. In this paper, the PML technique is used with a standard one-way model to solve a benchmark problem for underwater acoustics modeling. Accurate solutions are obtained with a PML layer with a thickness of only a quarter of the wavelength. The effect of a PML is analyzed in a perturbation analysis for waveguides. More >

  • Open Access

    ARTICLE

    Dynamics of Free Liquid Jets Affected by Obstructions at the Jet Entrance

    V. N. Lad1, Z. V. P. Murthy1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.3, pp. 241-255, 2015, DOI:10.3970/fdmp.2015.011.241

    Abstract Free liquid jets are of great technical importance in a variety of applications like ink-jet printing, glass painting, spray coating and metal cutting. Here we consider the changes induced in the dynamics of such jets by the presence of obstructions at the tube exit. Using stainless steel bars of 1.5 mm diameter as obstruction objects and aqueous solutions of glycerol of varying concentrations as working fluids, we performed experiments for different configurations, including a single rod at the centre of the tube exit, two parallel rods equidistant from the centre of the tube, and a 10 mesh screen. Images of… More >

  • Open Access

    ARTICLE

    Unsteady MHD Free Convection Past an Impulsively Started Isothermal Vertical Plate with Radiation and Viscous Dissipation

    Hawa Singh1, Paras Ram2, Vikas Kumar3

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.4, pp. 521-550, 2014, DOI:10.3970/fdmp.2014.010.521

    Abstract The fluctuating flow produced by magneto - hydrodynamic free convection past an impulsively started isothermal vertical plate is studied taking into account the effects of radiation and viscous dissipation. By using the similarity transformation, the governing equations are transformed into dimensionless form and then the system of nonlinear partial differential equations is solved by a perturbation technique. The considered uniform magnetic field acts perpendicular to the plate, which absorbs the fluid with a given suction velocity. A comparison is made in velocity and temperature profiles for two particular cases of real and imaginary time dependent functions. The effects of various… More >

  • Open Access

    ARTICLE

    Stability of Marangoni Convection in a Composite Porous-Fluid with a Boundary Slab of Finite Conductivity

    Norihan M. Arifin1, Ioan Pop2

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.2, pp. 149-160, 2009, DOI:10.3970/fdmp.2009.005.149

    Abstract A linear stability analysis is used to investigate the onset of Marangoni convection in a three-layer system comprising an incompressible fluid saturated porous layer over which lies a layer of the same fluid and below which lies a solid layer. The lower boundary is subjected to a fixed heat flux, while the upper free surface of the fluid is non-deformable. At the interface between the fluid and the porous layer, the Beavers-Joseph slip condition is used and the Darcy law is employed to describe the flow in the porous medium. The asymptotic analysis of the long-wavelength is performed and the… More >

  • Open Access

    ARTICLE

    Cased Hole Flexural Modes in Anisotropic Formations

    Ping’en Li1, Xianyue Su1,2, Youquan Yin1

    CMC-Computers, Materials & Continua, Vol.6, No.2, pp. 93-102, 2007, DOI:10.3970/cmc.2007.006.093

    Abstract Based on the perturbation method, for flexural wave in cased hole in anisotropic formation, the alteration in the phase velocity caused by the differences in elastic constants between anisotropic formation of interest and a reference, or unperturbed isotropic formation is obtained. Assuming the cased hole is well bonded, the Thomson-Haskell transfer matrix method is applied to calculate the dispersion relation of flexural wave in cased hole in unperturbed isotropic formation. Both the cases of a fast and slow formation are considered where the symmetry axis of a transversely isotropic (TI) formation makes an angle with the cased hole axis, the… More >

  • Open Access

    ARTICLE

    Asymptotic Solutions for Multilayered Piezoelectric Cylinders under Electromechanical Loads

    Chih-Ping Wu1, Yun-Siang Syu

    CMC-Computers, Materials & Continua, Vol.4, No.2, pp. 87-108, 2006, DOI:10.3970/cmc.2006.004.087

    Abstract Based on the three-dimensional (3D) piezoelectricity, we presented asymptotic solutions for multilayered piezoelectric hollow cylinders using the method of perturbation. The material properties in the general formulation are firstly regarded to be heterogeneous through the thickness, and then specified as the layerwise step functions in the cases of multilayered cylinders. The transverse normal load and normal electric displacement are respectively applied on the lateral surfaces of the cylinders. The boundary conditions of cylinders are considered to be simply supported at the two edges. In the formulation the twenty-two basic equations of piezoelectricity are reduced to eight differential equations in terms… More >

  • Open Access

    ARTICLE

    Three-Dimensional Static Analysis of Nanoplates and Graphene Sheets by Using Eringen's Nonlocal Elasticity Theory and the Perturbation Method

    Chih-Ping Wu1,2, Wei-Chen Li1

    CMC-Computers, Materials & Continua, Vol.52, No.2, pp. 73-103, 2016, DOI:10.3970/cmc.2016.052.073

    Abstract A three-dimensional (3D) asymptotic theory is reformulated for the static analysis of simply-supported, isotropic and orthotropic single-layered nanoplates and graphene sheets (GSs), in which Eringen's nonlocal elasticity theory is used to capture the small length scale effect on the static behaviors of these. The perturbation method is used to expand the 3D nonlocal elasticity problems as a series of two-dimensional (2D) nonlocal plate problems, the governing equations of which for various order problems retain the same differential operators as those of the nonlocal classical plate theory (CST), although with different nonhomogeneous terms. Expanding the primary field variables of each order… More >

  • Open Access

    ARTICLE

    Non-Deterministic Structural Response and Reliability Analysis Using a Hybrid Perturbation-Based Stochastic Finite Element and Quasi-Monte Carlo Method

    C. Wang1, W. Gao1, C.W. Yang1, C.M. Song1

    CMC-Computers, Materials & Continua, Vol.25, No.1, pp. 19-46, 2011, DOI:10.3970/cmc.2011.025.019

    Abstract The random interval response and probabilistic interval reliability of structures with a mixture of random and interval properties are studied in this paper. Structural stiffness matrix is a random interval matrix if some structural parameters and loads are modeled as random variables and the others are considered as interval variables. The perturbation-based stochastic finite element method and random interval moment method are employed to develop the expressions for the mean value and standard deviation of random interval structural displacement and stress responses. The lower bound and upper bound of the mean value and standard deviation of random interval structural responses… More >

Displaying 51-60 on page 6 of 58. Per Page