Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    PROCEEDINGS

    A Phase Field Model for Spalling Failure Due to Rolling Contact Fatigue

    Zheng Zhang1, Gan-Yun Huang1,*, Fei Shen1,2, Liao-Liang Ke1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-2, 2025, DOI:10.32604/icces.2025.010965

    Abstract Rolling element bearings are critical components in modern industrial machinery, with rolling contact fatigue (RCF) emerging as the predominant failure mode even under optimal installation, lubrication, and maintenance conditions [1–5]. In the paper, a phase field model coupling plasticity and fatigue is developed to investigate spalling behavior under RCF loading. Fatigue crack nucleation, propagation, and bifurcation can be effectively predicted using the phase field model based on theories of energy minimization [6–8]. A numerical framework is established by using the finite element method with an explicit integration scheme. The subsurface initiated spalling, the crack evolution, More >

  • Open Access

    ARTICLE

    A Simple and Robust Mesh Refinement Implementation in Abaqus for Phase Field Modelling of Brittle Fracture

    Anshul Pandey, Sachin Kumar*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3251-3286, 2025, DOI:10.32604/cmes.2025.067858 - 30 September 2025

    Abstract The phase field model can coherently address the relatively complex fracture phenomenon, such as crack nucleation, branching, deflection, etc. The model has been extensively implemented in the finite element package Abaqus to solve brittle fracture problems in recent studies. However, accurate numerical analysis typically requires fine meshes to model the evolving crack path effectively. A broad region must be discretized without prior knowledge of the crack path, further augmenting the computational expenses. In this proposed work, we present an automated framework utilizing a posteriori error-indicator (MISESERI) to demarcate and sufficiently refine the mesh along the… More >

  • Open Access

    ARTICLE

    Efficient Prediction of Quasi-Phase Equilibrium in KKS Phase Field Model via Grey Wolf-Optimized Neural Network

    Changsheng Zhu1,2,*, Jintao Miao1, Zihao Gao3,*, Shuo Liu1, Jingjie Li1

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4313-4340, 2025, DOI:10.32604/cmc.2025.067157 - 30 July 2025

    Abstract As the demand for advanced material design and performance prediction continues to grow, traditional phase-field models are increasingly challenged by limitations in computational efficiency and predictive accuracy, particularly when addressing high-dimensional and complex data in multicomponent systems. To overcome these challenges, this study proposes an innovative model, LSGWO-BP, which integrates an improved Grey Wolf Optimizer (GWO) with a backpropagation neural network (BP) to enhance the accuracy and efficiency of quasi-phase equilibrium predictions within the KKS phase-field framework. Three mapping enhancement strategies were investigated–Circle-Root, Tent-Cosine, and Logistic-Sine mappings–with the Logistic mapping further improved via Sine perturbation… More >

  • Open Access

    PROCEEDINGS

    A Phase Field Model for the Fracture of Micropolar Medium Considering the Tension-Torsion Coupling Effect

    Hongjun Yu1,*, Canjie Huang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011454

    Abstract A novel and irreversible phase field model accounting for tension-torsion coupling effect and size-effect is constructed in the context of continuum thermodynamics. First, a general framework considering the energy dissipation process influenced by micro and macro force is formulated according to thermodynamically consistent derivation. Next, the framework is specialized by introducing a material parameter called chiral coefficient to characterize the tension-torsion coupling effect within macro force constitutive according to isotropic micropolar elasticity theory. To gain insight of the chiral effect on the fracture behaviors, the analytical solution of uniaxial traction chiral rod is provided based More >

  • Open Access

    PROCEEDINGS

    Fracture of Soft Materials with Interfaces: Phase Field Modeling Based on Hybrid ES-FEM/FEM

    Shuyu Chen1,*, Jun Zeng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-2, 2023, DOI:10.32604/icces.2023.09672

    Abstract The engineering application prospects of soft materials in key areas such as aerospace and life science have stimulated extensive research interests in the academic community. An important topic here is to predict the service and failure behavior of such materials. Although considerable progress has been made, realworld application scenarios usually involve bi-material as well as multi-material adhesion, with cohesive interface rupture as the main failure vehicle. Inconsistent asymptotic solutions in the context of large deformations pose obstacles to the establishment of a theoretical framework for the interface fracture problem in soft materials [1]. Driven by… More >

  • Open Access

    PROCEEDINGS

    Oscillations of Rapid Fracture in Phase Field Modeling

    Jun Zeng1, Fucheng Tian1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09636

    Abstract Instability in dynamic fracture suppresses crack velocity from reaching theoretical limit predicted by the classical linear elastic fracture mechanics (LEFM). In thin systems, crack can accelerate to near the theoretical limiting velocity without micro-branching instability. A dynamic oscillatory instability is observed at such extreme crack speed. This sinusoidal oscillation was further found to be governed by intrinsic nonlinear scale. Using a dynamic phase-field model (PFM) with no attenuation of wave speed, we successfully reproduce the oscillations in the framework of non-linear deformation. The used PFM model based on Griffith's theory and derived from the nonconservative… More >

  • Open Access

    PROCEEDINGS

    Phase Field Modeling of Coupling Evolution of Polarization, Fracture and Dielectric Breakdown in Ferroelectric Materials

    Yong Zhang1,*, Jie Wang2,3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09368

    Abstract Ferroelectric materials have been widely used in various electromechanical devices such as sensors, actuators, transducers and energy storage devices due to their distinguished electromechanical coupling properties. Ferroelectric materials usually bear large mechanical loads and high electric fields in order to give full play to their potential. The interaction between fracture and dielectric breakdown is able to occur since the filler inside a crack will change the dielectric behaviors around it and dielectric breakdown can change the local mechanical properties of dielectric materials because of its weakening of chemical bonds. Therefore, a comprehensive and in-depth understanding… More >

  • Open Access

    ARTICLE

    Phase Field Modelling Allotropic Transformation of Solid Solution

    Yaochan Zhu1, 2, *, Hua Qiu1, Håkan Hallberg3

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1289-1302, 2020, DOI:10.32604/cmc.2020.06281

    Abstract Based on multiphase field conception and integrated with the idea of vectorvalued phase field, a phase field model for typical allotropic transformation of solid solution is proposed. The model takes the non-uniform distribution of grain boundaries of parent phase and crystal orientation into account in proper way, as being illustrated by the simulation of austenite to ferrite transformation in low carbon steel. It is found that the misorientation dependent grain boundary mobility shows strong influence on the formation of ferrite morphology comparing with the weak effect exerted by misorientation dependent grain boundary energy. The evolution More >

  • Open Access

    ABSTRACT

    Elastoplastic Phase Field Model for Time-dependent Hydrogen Diffusion, Hydride (and Blister) Formation and Fracture Initiation in Zirconium

    San-Qiang Shi

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.2, pp. 35-36, 2011, DOI:10.3970/icces.2011.020.035

    Abstract Zirconium and its alloys are key structural materials used in the nuclear power industry. In service, these metals are susceptible to a slow corrosion process that leads to a gradual pickup of hydrogen impurities from the environment. It is well known that hydrogen impurity will be attracted to stress concentrators such as notch and crack tips. At a certain hydrogen level, a complicated pattern of hydride precipitates can develop around these stress concentrators. Because of the brittleness of these hydrides, the original strength of the alloys can be reduced by orders of magnitude, and the… More >

  • Open Access

    ARTICLE

    Phase field models and Marangoni flows

    Rodica Borcia1,2, Michael Bestehorn2

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.4, pp. 287-294, 2007, DOI:10.3970/fdmp.2007.003.287

    Abstract We developed a phase field model for Marangoni convection in compressible fluids of van der Waals type far from criticality. The theoretical description is based on the Navier-Stokes equation with extra terms responsible for describing the Marangoni effect, the classical heat equation, and the continuity equation. The model previously developed for a two-layer geometry is now extended to drops and bubbles. Finally, we report on 2D numerical simulations for drop Marangoni migration in a vertical temperature gradient. More >

Displaying 1-10 on page 1 of 11. Per Page