Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14)
  • Open Access

    ARTICLE

    A Lightweight Convolutional Neural Network with Squeeze and Excitation Module for Security Authentication Using Wireless Channel

    Xiaoying Qiu1,*, Xiaoyu Ma1, Guangxu Zhao1, Jinwei Yu2, Wenbao Jiang1, Zhaozhong Guo1, Maozhi Xu3

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2025-2040, 2025, DOI:10.32604/cmc.2025.061869 - 16 April 2025

    Abstract Physical layer authentication (PLA) in the context of the Internet of Things (IoT) has gained significant attention. Compared with traditional encryption and blockchain technologies, PLA provides a more computationally efficient alternative to exploiting the properties of the wireless medium itself. Some existing PLA solutions rely on static mechanisms, which are insufficient to address the authentication challenges in fifth generation (5G) and beyond wireless networks. Additionally, with the massive increase in mobile device access, the communication security of the IoT is vulnerable to spoofing attacks. To overcome the above challenges, this paper proposes a lightweight deep More >

  • Open Access

    ARTICLE

    Computational Optimization of RIS-Enhanced Backscatter and Direct Communication for 6G IoT: A DDPG-Based Approach with Physical Layer Security

    Syed Zain Ul Abideen1, Mian Muhammad Kamal2,*, Eaman Alharbi3, Ashfaq Ahmad Malik4, Wadee Alhalabi5, Muhammad Shahid Anwar6,*, Liaqat Ali7

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2191-2210, 2025, DOI:10.32604/cmes.2025.061744 - 03 March 2025

    Abstract The rapid evolution of wireless technologies and the advent of 6G networks present new challenges and opportunities for Internet of Things (IoT) applications, particularly in terms of ultra-reliable, secure, and energy-efficient communication. This study explores the integration of Reconfigurable Intelligent Surfaces (RIS) into IoT networks to enhance communication performance. Unlike traditional passive reflector-based approaches, RIS is leveraged as an active optimization tool to improve both backscatter and direct communication modes, addressing critical IoT challenges such as energy efficiency, limited communication range, and double-fading effects in backscatter communication. We propose a novel computational framework that combines… More >

  • Open Access

    ARTICLE

    V2I Physical Layer Security Beamforming with Antenna Hardware Impairments under RIS Assistance

    Zerong Tang, Tiecheng Song*, Jing Hu

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1835-1854, 2024, DOI:10.32604/cmc.2024.056983 - 15 October 2024

    Abstract The Internet of Vehicles (IoV) will carry a large amount of security and privacy-related data, which makes the secure communication between the IoV terminals increasingly critical. This paper studies the joint beamforming for physical-layer security transmission in the coexistence of Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communication with Reconfigurable Intelligent Surface (RIS) assistance, taking into account hardware impairments. A communication model for physical-layer security transmission is established when the eavesdropping user is present and the base station antenna has hardware impairments assisted by RIS. Based on this model, we propose to maximize the V2I physical-layer security… More >

  • Open Access

    ARTICLE

    Physical Layer Security of 6G Vehicular Networks with UAV Systems: First Order Secrecy Metrics, Optimization, and Bounds

    Sagar Kavaiya1, Hiren Mewada2,*, Sagarkumar Patel3, Dharmendra Chauhan3, Faris A. Almalki4, Hana Mohammed Mujlid4

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3685-3711, 2024, DOI:10.32604/cmc.2024.053587 - 12 September 2024

    Abstract The mobility and connective capabilities of unmanned aerial vehicles (UAVs) are becoming more and more important in defense, commercial, and research domains. However, their open communication makes UAVs susceptible to undesirable passive attacks such as eavesdropping or jamming. Recently, the inefficiency of traditional cryptography-based techniques has led to the addition of Physical Layer Security (PLS). This study focuses on the advanced PLS method for passive eavesdropping in UAV-aided vehicular environments, proposing a solution to complement the conventional cryptography approach. Initially, we present a performance analysis of first-order secrecy metrics in 6G-enabled UAV systems, namely hybrid… More >

  • Open Access

    ARTICLE

    Anti-Jamming Null Space Projection Beamforming Based on Symbiotic Radio

    Baofeng Ji1,2,3,4,*, Yifan Liu1,2,3,4, Tingpeng Li1, Ling Xing2, Weixing Wang2, Shahid Mumtaz5, Xiaolong Shang6, Wanying Liu2, Congzheng Han4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 679-689, 2024, DOI:10.32604/cmes.2023.028667 - 22 September 2023

    Abstract With the development of information technology, more and more devices are connected to the Internet through wireless communication to complete data interconnection. Due to the broadcast characteristics of wireless channels, wireless networks have suffered more and more malicious attacks. Physical layer security has received extensive attention from industry and academia. MIMO is considered to be one of the most important technologies related to physical layer security. Through beamforming technology, messages can be transmitted to legitimate users in an offset direction that is as orthogonal as possible to the interference channel to ensure the reception SINR… More >

  • Open Access

    ARTICLE

    Secure Downlink Transmission Strategies against Active Eavesdropping in NOMA Systems: A Zero-Sum Game Approach

    Yanqiu Chen, Xiaopeng Ji*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 531-553, 2023, DOI:10.32604/cmes.2023.024531 - 05 January 2023

    Abstract Non-orthogonal multiple access technology (NOMA), as a potentially promising technology in the 5G/B5G era, suffers from ubiquitous security threats due to the broadcast nature of the wireless medium. In this paper, we focus on artificial-signal-assisted and relay-assisted secure downlink transmission schemes against external eavesdropping in the context of physical layer security, respectively. To characterize the non-cooperative confrontation around the secrecy rate between the legitimate communication party and the eavesdropper, their interactions are modeled as a two-person zero-sum game. The existence of the Nash equilibrium of the proposed game models is proved, and the pure strategy More >

  • Open Access

    ARTICLE

    Novel Homomorphic Encryption for Mitigating Impersonation Attack in Fog Computing

    V. Balaji, P. Selvaraj*

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2015-2027, 2023, DOI:10.32604/iasc.2023.029260 - 19 July 2022

    Abstract Fog computing is a rapidly growing technology that aids in pipelining the possibility of mitigating breaches between the cloud and edge servers. It facilitates the benefits of the network edge with the maximized probability of offering interaction with the cloud. However, the fog computing characteristics are susceptible to counteract the challenges of security. The issues present with the Physical Layer Security (PLS) aspect in fog computing which included authentication, integrity, and confidentiality has been considered as a reason for the potential issues leading to the security breaches. In this work, the Octonion Algebra-inspired Non- Commutative… More >

  • Open Access

    ARTICLE

    Physical Layer Authentication Using Ensemble Learning Technique in Wireless Communications

    Muhammad Waqas1,3,*, Shehr Bano2, Fatima Hassan2, Shanshan Tu1, Ghulam Abbas2, Ziaul Haq Abbas4

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4489-4499, 2022, DOI:10.32604/cmc.2022.029539 - 28 July 2022

    Abstract Cyber-physical wireless systems have surfaced as an important data communication and networking research area. It is an emerging discipline that allows effective monitoring and efficient real-time communication between the cyber and physical worlds by embedding computer software and integrating communication and networking technologies. Due to their high reliability, sensitivity and connectivity, their security requirements are more comparable to the Internet as they are prone to various security threats such as eavesdropping, spoofing, botnets, man-in-the-middle attack, denial of service (DoS) and distributed denial of service (DDoS) and impersonation. Existing methods use physical layer authentication (PLA), the… More >

  • Open Access

    ARTICLE

    Power Allocation Strategy for Secret Key Generation Method in Wireless Communications

    Bin Zhang1, Muhammad Waqas2,3, Shanshan Tu2,*, Syed Mudassir Hussain4, Sadaqat Ur Rehman5

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2179-2188, 2021, DOI:10.32604/cmc.2021.016553 - 13 April 2021

    Abstract Secret key generation (SKG) is an emerging technology to secure wireless communication from attackers. Therefore, the SKG at the physical layer is an alternate solution over traditional cryptographic methods due to wireless channels’ uncertainty. However, the physical layer secret key generation (PHY-SKG) depends on two fundamental parameters, i.e., coherence time and power allocation. The coherence time for PHY-SKG is not applicable to secure wireless channels. This is because coherence time is for a certain period of time. Thus, legitimate users generate the secret keys (SKs) with a shorter key length in size. Hence, an attacker… More >

  • Open Access

    ARTICLE

    An Efficient Impersonation Attack Detection Method in Fog Computing

    Jialin Wan1, Muhammad Waqas1,2, Shanshan Tu1,*, Syed Mudassir Hussain3, Ahsan Shah2, Sadaqat Ur Rehman4, Muhammad Hanif2

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 267-281, 2021, DOI:10.32604/cmc.2021.016260 - 22 March 2021

    Abstract Fog computing paradigm extends computing, communication, storage, and network resources to the network’s edge. As the fog layer is located between cloud and end-users, it can provide more convenience and timely services to end-users. However, in fog computing (FC), attackers can behave as real fog nodes or end-users to provide malicious services in the network. The attacker acts as an impersonator to impersonate other legitimate users. Therefore, in this work, we present a detection technique to secure the FC environment. First, we model a physical layer key generation based on wireless channel characteristics. To generate More >

Displaying 1-10 on page 1 of 14. Per Page