Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Uncertainty-Aware Physical Simulation of Neural Radiance Fields for Fluids

    Haojie Lian1, Jiaqi Wang1, Leilei Chen2,*, Shengze Li3, Ruochen Cao4, Qingyuan Hu5, Peiyun Zhao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1143-1163, 2024, DOI:10.32604/cmes.2024.048549

    Abstract This paper presents a novel framework aimed at quantifying uncertainties associated with the 3D reconstruction of smoke from 2D images. This approach reconstructs color and density fields from 2D images using Neural Radiance Field (NeRF) and improves image quality using frequency regularization. The NeRF model is obtained via joint training of multiple artificial neural networks, whereby the expectation and standard deviation of density fields and RGB values can be evaluated for each pixel. In addition, customized physics-informed neural network (PINN) with residual blocks and two-layer activation functions are utilized to input the density fields of the NeRF into Navier-Stokes equations… More >

  • Open Access

    ARTICLE

    Study of CO2 Flooding to Improve Development Effect in Conglomerate Reservoirs

    Haihai Dong1, Yaguang Qu2,3,*, Ming Liu4, Lei Zhang1, Jiakun Wu5

    Energy Engineering, Vol.119, No.4, pp. 1681-1695, 2022, DOI:10.32604/ee.2022.019843

    Abstract For low permeability sandstone reservoirs, CO2 flooding has been proved to be an effective method to enhance oil recovery. Reservoir A is a typical conglomerate reservoir in Xinjiang oilfield. The reservoir has strong water sensitivity, and the injection pressure continues to rise. Furthermore the oil well pressure continues to drop. According to the screening conditions of CO2 flooding, the reservoir A can easily achieve CO2 miscible flooding with moderate temperature. And the reservoir has the advantage of being close to the gas source. Firstly, the relationship curve between CO2 oil displacement efficiency and oil displacement pressure was obtained by changing… More >

  • Open Access

    ARTICLE

    Simulation of the Pressure-Sensitive Seepage Fracture Network in Oil Reservoirs with Multi-Group Fractures

    Yueli Feng1,2, Yuetian Liu1,2,*, Jian Chen1,2, Xiaolong Mao1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 395-415, 2022, DOI:10.32604/fdmp.2022.018141

    Abstract Stress sensitivity is a very important index to understand the seepage characteristics of a reservoir. In this study, dedicated experiments and theoretical arguments based on the visualization of porous media are used to assess the effects of the fracture angle, spacing, and relevant elastic parameters on the principal value of the permeability tensor. The fracture apertures at different angles show different change rates, which influence the relative permeability for different sets of fractures. Furthermore, under the same pressure condition, the fractures with different angles show different degrees of deformation so that the principal value direction of permeability rotates. This phenomenon… More >

  • Open Access

    ARTICLE

    On the Development of an Effective Pressure Driving System for Ultra-Low Permeability Reservoirs

    Yapu Zhang1,2, Zhengming Yang1,2, Dajian Li3, Xuewei Liu1, Xinli Zhao1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1067-1075, 2021, DOI:10.32604/fdmp.2021.016725

    Abstract Given its relevance to the exploitation of ultra-low permeability reservoirs, which account for a substantial proportion of the world’s exploited and still unexploited reserves, in the present study the development of an adequate water injection system is considered. Due to the poor properties and weak seepage capacity of these reservoirs, the water injection pressure typically increases continuously during water flooding. In this research, the impact on such a process of factors as permeability, row spacing, and pressure gradient is evaluated experimentally using a high-pressure large-scale outcrop model. On this basis, a comprehensive evaluation coefficient is introduced able to account for… More >

  • Open Access

    ABSTRACT

    The Experimental Simulation Technology and System of Solid Fluidization Exploitation of Marine Non-Diagenetic Natural Gas Hydrate

    Lin Jiang1,*, Na Wei1,*, Jinzhou Zhao1, Shouwei Zhou1,2, Liehui Zhang1, Qingping Li3, Guorong Wang1, Jun Zhao1, Kaisong Wu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.4, pp. 81-83, 2019, DOI:10.32604/icces.2019.04515

    Abstract With huge reserves, marine natural gas hydrate is one of the most potential unconventional alternative energy sources after shale gas, coalbed methane and tight gas. The research and pilot engineering of natural gas hydrate exploitation technology mainly adopts the depressurization method at home and abroad, all of which refer to the exploitation technology of conventional oil and gas.
    While using the depressurization method to exploit the non-diagenetic gas hydrate, the undersea hydrate decomposes in situ, partly flows to the bottom of the well, and escapes into the seawater in large quantities, and the hydrate will face the following six risks… More >

  • Open Access

    ABSTRACT

    Multiphysical simulation of the servo valve in the fuel supply system of auxiliary power unit

    S.S. Kim, S.M. Chang1, H.S. Jeong

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.1, pp. 9-10, 2009, DOI:10.3970/icces.2009.012.009

    Abstract In this paper, the three-dimensional model of a servo valve working in the fuel supply system of auxiliary power unit (APU) for the gas turbine engine is studied with numerical simulation of multiphysical system. The physics of electromagnetics, structural dynamics, and fluid dynamics are expressed in the form of independent system of partial differential equations, respectively. A commercial code named COMSOL is used to simulate the essential physics of the servo valve system, and the extracted data is used for the simulation of entire servo valve, which is coupled with torque motor, bushing tube, and valve orifice, etc. The valve… More >

Displaying 1-10 on page 1 of 6. Per Page