Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Artificial Magnetic Conductor as Planar Antenna for 5G Evolution

    Komsan Kanjanasit1, Pracha Osklang2,*, Terapass Jariyanorawiss3, Akkarat Boonpoonga4, Chuwong Phongcharoenpanich5

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 503-522, 2023, DOI:10.32604/cmc.2023.032427

    Abstract A 5G wireless system requests a high-performance compact antenna device. This research work aims to report the characterization and verification of the artificial magnetic conductor (AMC) metamaterial for a high-gain planar antenna. The configuration is formed by a double-side structure on an intrinsic dielectric slab. The 2-D periodic pattern as an impedance surface is mounted on the top surface, whereas at the bottom surface the ground plane with an inductive narrow aperture source is embedded. The characteristic of the resonant transmission is illustrated based on the electromagnetic virtual object of the AMC resonant structure to reveal the unique property of… More >

  • Open Access

    ARTICLE

    High Gain of UWB Planar Antenna Utilising FSS Reflector for UWB Applications

    Ahmed Jamal Abdullah Al-Gburi*, Imran Bin Mohd Ibrahim, Zahriladha Zakaria, Badrul Hisham Ahmad, Noor Azwan Bin Shairi, Mohammed Yousif Zeain

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1419-1436, 2022, DOI:10.32604/cmc.2022.019741

    Abstract In this paper, a high gain and directional coplanar waveguide (CPW)-fed ultra-wideband (UWB) planar antenna with a new frequency selective surface (FSS) unit cells design is proposed for UWB applications. The proposed UWB antenna was designed based on the Mercedes artistic-shaped planar (MAP) antenna. The antenna consisted of a circular ring embedded with three straight legs for antenna impedance bandwidth improvement. The modelled FSS used the integration of a two parallel conductive metallic patch with a circular loop structure. The FSS provided a UWB stopband filter response covering a bandwidth of 10.5 GHz, for frequencies from 2.2 to 12.7 GHz.… More >

  • Open Access

    ARTICLE

    Design and Implementation of T-Shaped Planar Antenna for MIMO Applications

    T. Prabhu1,*, S. Chenthur Pandian2

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2549-2562, 2021, DOI:10.32604/cmc.2021.018793

    Abstract This paper proposes, demonstrates, and describes a basic T-shaped Multi-Input and Multi-Output (MIMO) antenna with a resonant frequency of 3.1 to 10.6 GHz. Compared with the U-shaped antenna, the mutual coupling is minimized by using a T-shaped patch antenna. The T-shaped patch antenna shapes filter properties are tested to achieve separation over the 3.1 to 10.6 GHz frequency range. The parametric analysis, including width, duration, and spacing, is designed in the MIMO applications for good isolation. On the FR4 substratum, the configuration of MIMO is simulated. The appropriate dielectric material ɛr = 4.4 is introduced using this contribution and application… More >

Displaying 1-10 on page 1 of 3. Per Page