Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Fatigue Crack Propagation Analysis of Orthotropic Steel Bridge with Crack Tip Elastoplastic Consideration

    Ying Wang1,*, Zheng Yan1, Zhen Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 549-574, 2021, DOI:10.32604/cmes.2021.014727

    Abstract Due to the complex structure and dense weld of the orthotropic steel bridge deck (OSBD), fatigue cracks are prone to occur in the typical welding details. Welding residual stress (WRS) will cause a plastic zone at the crack tip. In this paper, an elastoplastic constitutive model based on the Chaboche kinematic hardening model was introduced, and the extended finite element method (XFEM) was used to study the influence of material elastoplasticity and crack tip plastic zone on the law of fatigue crack propagation. By judging the stress state of the residual stress field at the crack tip and selecting different… More >

  • Open Access

    ARTICLE

    Relaxation of Residual Stress under Fatigue Load Described in Terms of Cyclic-Plastic Deformation Model

    S. Kwofie1

    Structural Durability & Health Monitoring, Vol.8, No.4, pp. 295-306, 2012, DOI:10.32604/sdhm.2012.008.295

    Abstract Fatigue life of components may be enhanced by mechanical surface treatments, such as shot penning, which induce compressive residual stresses in the component's surface. Under cyclic/fatigue loads, however, relaxation of the residual stress may occur thus, reducing the optimum benefit of the surface treatment. For health monitoring / life prediction under such conditions it is important to be able to assess stress relaxation in real-time. However, the phenomenon of cyclic relaxation of residual stress is not well understood and its tracking during component operation is a technical challenge. By means of cyclic plastic deformation model and the Matlab/Simulink Program cyclic… More >

  • Open Access

    ARTICLE

    A Deep Learning-Based Computational Algorithm for Identifying Damage Load Condition: An Artificial Intelligence Inverse Problem Solution for Failure Analysis

    Shaofei Ren1,2, Guorong Chen2 , Tiange Li2 , Qijun Chen2, Shaofan Li2, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.3, pp. 287-307, 2018, DOI:10.31614/cmes.2018.04697

    Abstract In this work, we have developed a novel machine (deep) learning computational framework to determine and identify damage loading parameters (conditions) for structures and materials based on the permanent or residual plastic deformation distribution or damage state of the structure. We have shown that the developed machine learning algorithm can accurately and (practically) uniquely identify both prior static as well as impact loading conditions in an inverse manner, based on the residual plastic strain and plastic deformation as forensic signatures. The paper presents the detailed machine learning algorithm, data acquisition and learning processes, and validation/verification examples. This development may have… More >

  • Open Access

    ABSTRACT

    Molecular Dynamics Study on the Effects of Surface Notches on Plastic Deformation Behavior of Magnesium Nanopillars

    Xiaoyue Yang1, Shuang Xu1,*, Qiwen Liu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.3, pp. 49-49, 2019, DOI:10.32604/icces.2019.04889

    Abstract In this study, molecular dynamics simulations were performed to study the uniaxial compression deformation of magnesium nanopillars with square and triangular surface notches. The generation and evolution process of internal defects of magnesium nanopillars was analyzed in detail. The results indicated that the triangular notches had little effect on the deformation behavior of magnesium nanopillars, and the governing mechanism of plastic deformation was the initiation and motion of pyramidal dislocations. As for magnesium nanopillars with square notches, the initial plastic deformation was mainly caused by the pyramidal slip. After the notches were closed, {10̅11} <10̅12> twins were observed, the expansion… More >

  • Open Access

    ARTICLE

    A Three-Dimensional Model of Shape Memory Alloys under Coupled Transformation and Plastic Deformation

    B. Chen1,2, X. Peng1,2,3, X. Chen1,2, J. Wang4, H. Wang4, N. Hu1,5,6

    CMC-Computers, Materials & Continua, Vol.30, No.2, pp. 145-176, 2012, DOI:10.3970/cmc.2012.030.145

    Abstract A three-dimensional phenomenological model for coupled transformation and plastic behavior of shape memory alloys (SMAs) is presented. The strain is separated into elastic, thermal, transformation and plastic strain parts, and two yield functions are adopted to describe respectively the transformation and plastic deformation. An integral algorithm is suggested, including the update of the stress and the tangent stiffness. Numerical examples and the comparison with experimental results show that the proposed approach can well describe the behavior of the SMAs subjected to complicated thermal-mechanical loading, demonstrating the validity of the model in the description of the constitutive behavior of SMAs, including… More >

  • Open Access

    ARTICLE

    An Eulerian-Based Formulation for Studying the Evolution of the Microstructure under Plastic Deformations

    S.Ahmadi1, B.L.Adams1 , D.T.Fullwood1

    CMC-Computers, Materials & Continua, Vol.14, No.2, pp. 141-170, 2009, DOI:10.3970/cmc.2009.014.141

    Abstract In this paper, a model is introduced to examine the evolution of the microstructure function under plastic deformations. This model is based upon a double continuity relationship that conserves both material particles in the mass space and orientations in the orientation space. An Eulerian description of the motion of material particles and orientations is considered, and continuity relations are derived for both spaces. To show how the proposed model works, two different case studies are provided. In the mass space, the continuity relation is used to examine the evolution of the microstructure function of a two-phase (isotropic) material; while, in… More >

Displaying 1-10 on page 1 of 6. Per Page