Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Effect of D-Lactide Content and Molecular Weight of PLA on Interfacial Compatibilization with PBAT and the Resultant Morphological, Thermal, and Mechanical Properties

    Aylin Altınbay1,2, Ceren Özsaltık2, Mohammadreza Nofar2,*

    Journal of Renewable Materials, Vol.13, No.8, pp. 1605-1621, 2025, DOI:10.32604/jrm.2025.02025-0048 - 22 August 2025

    Abstract Interfacial compatibilization is essential to generate compatible blend structures with synergistically enhanced properties. However, the effect of molecular structure on the reactivity of compatibilizers is not properly known. This study investigates the compatibilization effect of multifunctional, epoxy-based Joncryl chain extender in blends of polylactide (PLA) and polybutylene adipate-co-terephthalate (PBAT) using PLA with varying D-lactide contents and molecular weights. These PLAs were high molecular weight amorphous PLA (aPLA) with D-content of 12 mol% and semi-crystalline PLA (scPLA) grades with D-contents below 1.5 mol% at both high (h) and low (l) molecular weights. The reactivity of Joncryl… More >

  • Open Access

    ARTICLE

    Effect of Mixing Strategy on the Structure-Properties of the PLA/PBAT Blends Incorporated with CNC

    Deniz Sema Sarul1, Dogan Arslan2, Emre Vatansever1, Yusuf Kahraman2, Ali Durmus3, Reza Salehiyan4, Mohammadreza Nofar1,2,*

    Journal of Renewable Materials, Vol.10, No.1, pp. 149-164, 2022, DOI:10.32604/jrm.2022.017003 - 27 July 2021

    Abstract Polylactide (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blend nanocomposites including 3 wt% of cellulose nanocrystals (CNCs) were prepared by melt compounding method in a twin-screw extruder and an internal mixer. Blend nanocomposites were formulated by diluting three different masterbatches prepared by solution casting method that contained 7 wt% of CNC. These masterbatches were: (m1) PLA/PBAT/CNC masterbatch; (m2) PLA/CNC masterbatch; and (m3) PBAT/CNC masterbatch. These were to explore how different preparation methods affect the dispersion and localization of CNC and hence the properties of PLA/PBAT/CNC blend nanocomposites. Scanning electron microscopy (SEM) was used to study the structural changes… More >

  • Open Access

    ARTICLE

    Biodegradable PLA/PBAT/Clay Nanocomposites: Morphological, Rheological and Thermomechanical Behavior

    Juan P. Correa1,2*, Alejandro Bacigalupe2,3, Jorge Maggi4, Patricia Eisenberg2,3

    Journal of Renewable Materials, Vol.4, No.4, pp. 258-265, 2016, DOI:10.7569/JRM.2016.634117

    Abstract Poly(lactic acid)/poly(butylene adipate-co-terephthalate) (PLA/PBAT)-based nanocomposites were prepared by melt blending of PLA and PBAT with 5 wt% of unmodified (Cloisite Na) and modified (Cloisite 30B) montmorillonites. X-ray diffraction (XRD) revealed an intercalated structure in both nanocomposites. The extent of the intercalation was higher for nanocomposites based on modified clays (OMMT) with chemical affinity with the polymer matrix. Rheological measurements have shown an increase in viscosity and a better degree of clay dispersion for nanocomposites containing OMMT. Nanocomposites with OMMT showed lower PBAT separated phase particle size and improvements in thermal stability, mechanical properties and water More >

Displaying 1-10 on page 1 of 3. Per Page