Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (70)
  • Open Access

    ARTICLE

    Buckley-Leverett Analysis for Transient Two-phase Flow in Fractal Porous Medium

    Yonggang Duan1, Ting Lu1, Mingqiang Wei1, Boming Yu2, Zhelun Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.6, pp. 481-504, 2015, DOI:10.3970/cmes.2015.109.481

    Abstract Analysis of Buckley-Leverett solution in fractal porous medium does prediction of water saturation profile a favor. On the approximation that porous medium consists of a bundle of tortuous capillaries, a physical conceptual Buckley- Leverett model of transient two-phase flow in fractal porous medium is developed based on the fractal characteristics of pore size distribution. The relationship between water saturation and distance is presented according to Buckley-Leverett solution, and the proposed Buckley-Leverett expression is the function of fractal structural parameters (such as pore fractal dimension, tortuosity fractal dimension, maximum and minimum diameters of capillaries) and fluid properties (such as viscosity, contact… More >

  • Open Access

    ARTICLE

    Combined MHD and Pulsatile Flow on Porous Medium

    A. Khechiba1, Y. Benakcha1, A. Ghezal1, P. Spetiri2

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.2, pp. 137-154, 2018, DOI: 10.3970/fdmp.2018.04054

    Abstract This work investigates the dynamic behavior of a pulsatile flow electrically conducting through porous medium in a cylindrical conduit under the influence of a magnetic field. The imposed magnetic field is assumed to be uniform and constant. An exact solution of the equations governing magneto hydro-dynamics (MHD) flow in a conduit has been obtained in the form of Bessel functions. The analytical study has been used to establish an expression between the Hartmann number, Darcy number and the stress coefficient. The numerical method is based on an implicit finite difference time marching scheme using the Thomas algorithm and Gauss Seidel… More >

  • Open Access

    ARTICLE

    Mixed Convection of a Nanofluid in a Vertical Anisotropic Porous Channel with Heated/Cooled Walls

    S. Slama1, H. Kahalerras1, B. Fersadou1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.3, pp. 155-172, 2017, DOI:10.3970/fdmp.2017.013.155

    Abstract A numerical study is conducted to investigate the problem of mixed convection of a nanofluid in a vertical porous channel with one wall heated and the other cooled. The Darcy-Brinkman-Forchheimer model is used to describe the flow in the porous medium, considered as anisotropic in thermal conductivity, and the two-phase approach is adopted to simulate the motion of the nanofluid. The governing equations with the associated boundary conditions are solved by the finite volume method. The parametric study is focused on the variation of the Richardson number Ri, the heat fluxes ratio Rq, the Darcy number and the thermal conductivity… More >

  • Open Access

    ARTICLE

    Effects of Internal Heat Generation and Variable Fluid Properties on Mixed Convection Past a Vertical Heated Plate

    P. A. Dinesh1, N. Nalinakshi2, D. V. Ch,rashekhar3

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.4, pp. 465-490, 2014, DOI:10.3970/fdmp.2014.010.465

    Abstract Heat and Mass transfer from a vertical heated plate embedded in a sparsely packed porous medium with internal heat generation and variable fluid properties like permeability, porosity and thermal conductivity has been investigated numerically. In particular, the governing highly non-linear coupled partial differential equations are transformed into a system of ordinary differential equations with the help of similarity transformations and solved numerically by using a shooting algorithm based on a Runge-Kutta-Fehlberg scheme and a Newton Raphson method (to obtain velocity, temperature and concentration distributions). The heat and mass transfer characteristics are analyzed and related physical aspects are discussed in detail… More >

  • Open Access

    ARTICLE

    Stability of Marangoni Convection in a Composite Porous-Fluid with a Boundary Slab of Finite Conductivity

    Norihan M. Arifin1, Ioan Pop2

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.2, pp. 149-160, 2009, DOI:10.3970/fdmp.2009.005.149

    Abstract A linear stability analysis is used to investigate the onset of Marangoni convection in a three-layer system comprising an incompressible fluid saturated porous layer over which lies a layer of the same fluid and below which lies a solid layer. The lower boundary is subjected to a fixed heat flux, while the upper free surface of the fluid is non-deformable. At the interface between the fluid and the porous layer, the Beavers-Joseph slip condition is used and the Darcy law is employed to describe the flow in the porous medium. The asymptotic analysis of the long-wavelength is performed and the… More >

  • Open Access

    ARTICLE

    Effect of Double Stratification on Free Convection in a Power-Law Fluid Saturated Porous Medium

    D. Srinivasacharya1, G. Swamy Reddy1

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.3, pp. 291-305, 2013, DOI:10.3970/fdmp.2013.009.291

    Abstract Free convection and related heat and mass transfer along a vertical plate embedded in a power-law fluid saturated Darcy porous medium with thermal and solutal stratification effects is studied. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations and then solved numerically by means of a shooting method. The variations of non-dimensional velocity, temperature and concentration are presented graphically for various values of the power-law index, and of the thermal and solutal stratification parameters. In addition, the heat and mass transfer rates are tabulated for different values of the governing nondimensional numbers. More >

  • Open Access

    ARTICLE

    Effect of Suspended Particles on the Onset of Thermal Convection in a Compressible Viscoelastic Fluid in a Darcy-Brinkman Porous Medium

    G. C. Rana1, R. C. Thakur2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.3, pp. 251-265, 2013, DOI:10.3970/fdmp.2013.009.251

    Abstract In this paper, the effect of suspended particles on thermal convection in a compressible viscoelastic fluid hosted in a porous medium is considered. For the porous medium, the Brinkman model is employed with the Rivlin-Ericksen approach used in parallel to describe the rheological behaviour of the viscoelastic fluid. By applying a normal mode analysis method, a dispersion relation is derived and solved analytically. It is observed that the medium permeability, suspended particles, gravity field and viscoelasticity introduce oscillatory modes. For stationary convection, it is found that the Darcy-Brinkman number has a stabilizing effect whereas the suspended particles and medium permeability… More >

  • Open Access

    ARTICLE

    Heat Transfer and Entropy Analysis for Mixed Convection in a Discretely Heated Porous Square Cavity

    A. Maougal1, R. Bessaïh2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.1, pp. 35-59, 2013, DOI:10.3970/fdmp.2013.009.035

    Abstract The present study is a numerical investigation of the irreversibility and heat transfer properties of a steady laminar mixed flow in a square cavity, filled with a saturated porous medium and heated by a discrete set of heat sources. The continuity, Navier-Stokes, energy and entropy generation equations have been solved by a finite volume method. Both heat transfer irreversibility and fluid friction irreversibility have been taken into account in the computations of entropy generation. Simulations have bee carried out for Reynolds number Re=20, 40, 80, 100, 200, Darcy number, Da=10-5-10-1, Prandtl number, Pr=0.015, 0.7, 10, 103, and aspect ratio, D/H… More >

  • Open Access

    ARTICLE

    Flow Characteristics of Revolving Ferrofluid with Variable Viscosity in a Porous Medium in the Presence of Stationary Disk

    Paras Ram1, Anupam Bhandari2

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.4, pp. 437-452, 2012, DOI:10.3970/fdmp.2012.008.437

    Abstract The present problem is formulated by considering the dynamics of a ferromagnetic fluid of variable viscosity permeating a porous medium in a rotating system in the presence of a stationary boundary. The fluid at large distance from such a boundary (disk) is assumed to rotate at a given uniform angular velocity. The viscosity of the fluid is assumed to depend on the intensity of the applied magnetic field. The governing nonlinear partial differential equations are transformed into a set of coupled nonlinear ordinary differential equations resorting to a similarity transformation. The resulting system of equations is solved numerically by applying… More >

  • Open Access

    ARTICLE

    Modelling of Evaporative Cooling of Porous Medium Filled with Evaporative Liquid

    D.P.Mondal1, S.Das1, Anshul Badkul1, Nidhi Jha1

    CMC-Computers, Materials & Continua, Vol.13, No.2, pp. 115-134, 2009, DOI:10.3970/cmc.2009.013.115

    Abstract The cooling effect by evaporative liquid is modeled by considering that heat is transferred from the system to the surrounding due to evaporation of liquid through the pores present in the medium. The variation of cooling rate with cell size, volume fraction of pores and physical conditions has been analyzed. The model demonstrates that it increases with increase in thickness of the foam slab and with increase in velocity of air. It is also observed that cooling effect decreases with decrease in volume fraction of porosity and with increase in relative density, cell size, thermal conductivity and relative humidity. More >

Displaying 61-70 on page 7 of 70. Per Page