Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (70)
  • Open Access

    ARTICLE

    Natural Convection in an H-Shaped Porous Enclosure Filled with a Nanofluid

    Zehba A. S. Raizah1, Abdelraheem M. Aly1,2,*

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 3233-3251, 2021, DOI:10.32604/cmc.2021.012402

    Abstract This study simulates natural convection flow resulting from heat partitions in an H-shaped enclosure filled with a nanofluid using an incompressible smoothed particle hydrodynamics (ISPH) method. The right area of the H-shaped enclosure is saturated with non-Darcy porous media. The center variable partitions of the H-shaped enclosure walls are kept at a high-temperature Th. The left and right walls of the H-shaped enclosure are positioned at a low temperature Tc and the other walls are adiabatic. In ISPH method, the source term in pressure Poisson equation (PPE) is modified. The influences of the controlling parameters on the temperature distributions, the… More >

  • Open Access

    ARTICLE

    Thermal Analysis of MHD Non-Newtonian Nanofluids over a Porous Media

    Asad Ejaz1, Imran Abbas1, Yasir Nawaz1, Muhammad Shoaib Arif1, Wasfi Shatanawi2,3,4,*, Javeria Nawaz Abbasi5

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.3, pp. 1119-1134, 2020, DOI:10.32604/cmes.2020.012091

    Abstract In the present research, Tiwari and Das model are used for the impact of a magnetic field on non-Newtonian nanofluid flow in the presence of injection and suction. The PDEs are converted into ordinary differential equations (ODEs) using the similarity method. The obtained ordinary differential equations are solved numerically using shooting method along with RK-4. Part of the present study uses nanoparticles (NPs) like TiO2 and Al2O3 and sodium carboxymethyl cellulose (CMC/water) is considered as a base fluid (BF). This study is conducted to find the influence of nanoparticles, Prandtl number, and magnetic field on velocity and temperature profile, however,… More >

  • Open Access

    ARTICLE

    Heat Transfer in MHD Flow of Maxwell Fluid via Fractional Cattaneo-Friedrich Model: A Finite Difference Approach

    Muhammad Saqib1, Hanifa Hanif1, 2, T. Abdeljawad3, 4, 5, Ilyas Khan6, *, Sharidan Shafie1, Kottakkaran Sooppy Nisar7

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 1959-1973, 2020, DOI:10.32604/cmc.2020.011339

    Abstract The idea of fractional derivatives is applied to several problems of viscoelastic fluid. However, most of these problems (fluid problems), were studied analytically using different integral transform techniques, as most of these problems are linear. The idea of the above fractional derivatives is rarely applied to fluid problems governed by nonlinear partial differential equations. Most importantly, in the nonlinear problems, either the fractional models are developed by artificial replacement of the classical derivatives with fractional derivatives or simple classical problems (without developing the fractional model even using artificial replacement) are solved. These problems were mostly solved for steady-state fluid problems.… More >

  • Open Access

    ARTICLE

    Heat and Mass Transfer Characteristics of Alkali Metals in a Combined Wick of High-Temperature Heat Pipe

    Ping Yu1, *, Chuanhui Huang1, Lei Liu1, Huafeng Guo1, Chengqiang Liu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 267-280, 2020, DOI:10.32604/fdmp.2020.06528

    Abstract To study the heat and mass transfer characteristics of alkali metals in a combined porous wick in high-temperature heat pipes, a three-dimensional (3-D) numerical model is constructed by using the finite volume method, Darcy’s theory, and the theory of local thermal equilibrium. The research finds that the pressure drop of fluids flowing through a combined porous wick exhibits an increasing trend with increasing flow velocity at the inlet and with decreasing permeability of the porous media; a combined porous wick of lower porosity and permeability and larger fluid velocity at the inlet is found to have a less uniformly distributed… More >

  • Open Access

    ARTICLE

    Unsteady MHD Free Convective Flow Past a Vertical Porous Plate with Span-Wise Fluctuating Heat and Mass Transfer Effects

    S . Samantha Kumari1,*, G. Sankara Sekhar Raju2

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.5, pp. 471-489, 2019, DOI:10.32604/fdmp.2019.04222

    Abstract This paper investigates the chemical reaction and thermal radiation effects on unsteady MHD free convective flow past a vertical porous plate in the presence of heat absorption/generation. The novelty of present investigation is that the temperature and concentration of the plate are span wise cosinusoidally unsteady with time. The second order perturbation technique is employed to study the non-linear partial differential equations which govern the fluid flow. The effects of magnetic parameter, radiation, Eckert number, Schmidt number and chemical reaction parameters on velocity, temperature and concentration distributions as well as skin friction coefficients, the rate of heat transfer and the… More >

  • Open Access

    ARTICLE

    Heat transfer studies in a vertical channel filled with aporous medium

    Pradeep M Kamath1, C Balaji 2, S P Venkateshan1

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.2, pp. 111-126, 2013, DOI:10.3970/fdmp.2013.009.111

    Abstract This paper reports the results of an experimental study on the enhancement in the heat transfer from a heated aluminium plate placed in a vertical channeland filled with an aluminium metal foam. Hydrodynamic and heat transfer experiments have been conducted for different foam thicknesses. The results of the hy-drodynamic experiments show no significant variation in the pressure drop with anincrease in the foam thickness. However, an increase in the foam thickness contributes an average heat transfer enhancement of 2 to 4 times over an empty channelfor the same Reynolds number. Correlations for Nusselt number are also developedfor porous and empty… More >

  • Open Access

    ARTICLE

    Heat and Mass Transfer of a non-Newtonian Fluid Flow in an Anisotropic Porous Channel with Chemical Surface Reaction

    Z. Neffah1, H. Kahalerras1, *, B. Fersadou1

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.1, pp. 39-56, 2018, DOI:10.3970/fdmp.2018.014.039

    Abstract A numerical study of heat and mass transfer in a non-Newtonian fluid in a parallel-plate channel partly filled with an anisotropic porous medium and subjected to an exothermic chemical reaction on its walls has been conducted. The flow field in the porous region has been modeled by the modified Brinkman-Forchheimer extended Darcy model for power-law fluids and a finite volume method has been used to solve the governing equations. The influence played by a variation of the anisotropic ratio on thermal conductivity, power-law index, Darcy number, and chemical reaction characteristics has been examined. We show that the anisotropy of a… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Thermosolutal Convective Transitions in a Very Narrow Porous Annulus under the Influence of Lewis Number

    A. Ja1, A. Cheddadi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.4, pp. 235-249, 2017, DOI:10.3970/fdmp.2017.013.235

    Abstract This paper reports on the natural convection within a very narrow horizontal annular cavity filled with a porous medium saturated by a binary fluid. The main objective of this study is the identification of the effect of Lewis number on the flow structure and on the heat and mass transfer rates, in a cavity of very small radius ratio R=1.05, in the case of equal buoyancy forces (N=1), for a Rayleigh number Ra=50. The dimensionless governing equations were solved by the centered Finite Difference method using the ADI scheme. Several multicellular flows appear during the variation of the Lewis number,… More >

  • Open Access

    ABSTRACT

    Fluid transport in a Heterogeneous Porous Medium: Experiments, Mathematics and Computations

    A.P. Selvadurai

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.3, pp. 67-68, 2011, DOI:10.3970/icces.2011.016.067

    Abstract Theme Lecture More >

  • Open Access

    ARTICLE

    Numerical Modeling of the Influence of Water Suction on the Formation of Strain Localization in Saturated Sand

    X. Liu, A. Scarpas1

    CMES-Computer Modeling in Engineering & Sciences, Vol.9, No.1, pp. 57-74, 2005, DOI:10.3970/cmes.2005.009.057

    Abstract Numerical investigations of strain localization have been performed on 3D dense fully saturated sand specimens subjected to triaxial loading and simultaneous inflow or outflow conditions. The role of the water suction field on the formation and evolution of strain localization is addressed computationally. It has been shown that, in a porous medium, the fluid (water) phase plays indeed an important role in strain localization. The formation and evolution of strain localization are influenced both by the material behaviour of the solid component and the interaction between components. In this contribution, after a presentation of the incremental formulation of the coupled… More >

Displaying 51-60 on page 6 of 70. Per Page