Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (44)
  • Open Access

    ARTICLE

    A Techno-Economical Characterization of Solar PV Power Generation in Rwanda: The Role of Subsidies and Incentives

    Morris Kayitare1,2,*, Gace Athanase Dalson2,3, Al-Mas Sendegeyad4

    Energy Engineering, Vol.120, No.9, pp. 2155-2175, 2023, DOI:10.32604/ee.2023.028559 - 03 August 2023

    Abstract Standalone Solar PV systems have been vital in the improvement of access to energy in many countries. However, given the large cost of solar PV plants’ components, in developing countries, there is a dear need for such components to be subsidised and incentivised for the consumers to afford the produced energy. Moreover, there is a need for optimal sizing of the solar PV plants taking into account the solar information, energy requirement for various activities, and economic conditions in the off-grid regions in Rwanda. This study aims to develop optimally sized solar PV plants suited… More > Graphic Abstract

    A Techno-Economical Characterization of Solar PV Power Generation in Rwanda: The Role of Subsidies and Incentives

  • Open Access

    ARTICLE

    PSO-BP-Based Optimal Allocation Model for Complementary Generation Capacity of the Photovoltaic Power Station

    Zhenfang Liu*, Haibo Liu, Dongmei Zhang

    Energy Engineering, Vol.120, No.7, pp. 1717-1727, 2023, DOI:10.32604/ee.2023.027968 - 04 May 2023

    Abstract To improve the operation efficiency of the photovoltaic power station complementary power generation system, an optimal allocation model of the photovoltaic power station complementary power generation capacity based on PSO-BP is proposed. Particle Swarm Optimization and BP neural network are used to establish the forecasting model, the Markov chain model is used to correct the forecasting error of the model, and the weighted fitting method is used to forecast the annual load curve, to complete the optimal allocation of complementary generating capacity of photovoltaic power stations. The experimental results show that this method reduces the More >

  • Open Access

    ARTICLE

    Research on Coordinated Development and Optimization of Distribution Networks at All Levels in Distributed Power Energy Engineering

    Zhuohan Jiang1, Jingyi Tu1, Shuncheng Liu1, Jian Peng1, Guang Ouyang2,*

    Energy Engineering, Vol.120, No.7, pp. 1655-1666, 2023, DOI:10.32604/ee.2023.026981 - 04 May 2023

    Abstract The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels. This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions. The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales. More >

  • Open Access

    ARTICLE

    Short-Term Prediction of Photovoltaic Power Generation Based on LMD Permutation Entropy and Singular Spectrum Analysis

    Wenchao Ma*

    Energy Engineering, Vol.120, No.7, pp. 1685-1699, 2023, DOI:10.32604/ee.2023.025404 - 04 May 2023

    Abstract The power output state of photovoltaic power generation is affected by the earth's rotation and solar radiation intensity. On the one hand, its output sequence has daily periodicity; on the other hand, it has discrete randomness. With the development of new energy economy, the proportion of photovoltaic energy increased accordingly. In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation, this paper proposes the short-term prediction of photovoltaic power generation based on the improved multi-scale permutation entropy, local mean decomposition… More >

  • Open Access

    ARTICLE

    Hyperparameter Optimization Based Deep Belief Network for Clean Buses Using Solar Energy Model

    Shekaina Justin1,*, Wafaa Saleh1,2, Tasneem Al Ghamdi1, J. Shermina3

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1091-1109, 2023, DOI:10.32604/iasc.2023.032589 - 29 April 2023

    Abstract Renewable energy has become a solution to the world’s energy concerns in recent years. Photovoltaic (PV) technology is the fastest technique to convert solar radiation into electricity. Solar-powered buses, metros, and cars use PV technology. Such technologies are always evolving. Included in the parameters that need to be analysed and examined include PV capabilities, vehicle power requirements, utility patterns, acceleration and deceleration rates, and storage module type and capacity, among others. PVPG is intermittent and weather-dependent. Accurate forecasting and modelling of PV system output power are key to managing storage, delivery, and smart grids. With… More >

  • Open Access

    ARTICLE

    ANALYSIS OF POWER GENERATION PROCESS EXERGY EFFICIENCY OF LARGE CDQ WASTE HEAT BOILER UNDER THE BACKGROUND OF DOUBLE CARBON

    Tieming Wanga , Fuyong Sub,*

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-4, 2023, DOI:10.5098/hmt.20.12

    Abstract This paper analyzes the power generation technology of coke dry quenching (CDQ) waste heat boiler, and compares the exergy efficiency of medium temperature medium pressure boiler and high temperature high pressure boiler. The scheme of high temperature ultrahigh pressure primary intermediate reheat boiler to further improve the power generation efficiency of CDQ waste heat is put forward, and the exergy efficiency is analyzed. The bottleneck problem of further improving power generation efficiency by CDQ waste heat power generation and the exergy efficiency limit under the current process conditions are obtained. More >

  • Open Access

    ARTICLE

    Two-Stage Optimal Dispatching of Wind Power-Photovoltaic-Solar Thermal Combined System Considering Economic Optimality and Fairness

    Weijun Li1, Xin Die2, Zhicheng Ma3, Jinping Zhang3, Haiying Dong1,*

    Energy Engineering, Vol.120, No.4, pp. 1001-1022, 2023, DOI:10.32604/ee.2023.024426 - 13 February 2023

    Abstract Aiming at the problems of large-scale wind and solar grid connection, how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations, a two-stage optimal dispatching model of wind power-photovoltaic-solar thermal combined system considering economic optimality and fairness is proposed. Firstly, the first stage dispatching model takes the overall economy optimization of the system as the goal and the principle of maximizing the consumption of wind and solar output, obtains the optimal output value under the economic conditions of each new energy station, and then obtains the… More > Graphic Abstract

    Two-Stage Optimal Dispatching of Wind Power-Photovoltaic-Solar Thermal Combined System Considering Economic Optimality and Fairness

  • Open Access

    ARTICLE

    A Levenberg–Marquardt Based Neural Network for Short-Term Load Forecasting

    Saqib Ali1,2, Shazia Riaz2,3, Safoora2, Xiangyong Liu1, Guojun Wang1,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1783-1800, 2023, DOI:10.32604/cmc.2023.035736 - 06 February 2023

    Abstract Short-term load forecasting (STLF) is part and parcel of the efficient working of power grid stations. Accurate forecasts help to detect the fault and enhance grid reliability for organizing sufficient energy transactions. STLF ranges from an hour ahead prediction to a day ahead prediction. Various electric load forecasting methods have been used in literature for electricity generation planning to meet future load demand. A perfect balance regarding generation and utilization is still lacking to avoid extra generation and misusage of electric load. Therefore, this paper utilizes Levenberg–Marquardt (LM) based Artificial Neural Network (ANN) technique to… More >

  • Open Access

    ARTICLE

    Optimal Scheduling Method of Cogeneration System with Heat Storage Device Based on Memetic Algorithm

    Haibo Li1,*, Yibao Wang1, Xinfu Pang1, Wei Liu1, Xu Zhang2

    Energy Engineering, Vol.120, No.2, pp. 317-343, 2023, DOI:10.32604/ee.2023.023715 - 29 November 2022

    Abstract Electric-heat coupling characteristics of a cogeneration system and the operating mode of fixing electricity with heat are the main reasons for wind abandonment during the heating season in the Three North area. To improve the wind-power absorption capacity and operating economy of the system, the structure of the system is improved by adding a heat storage device and an electric boiler. First, aiming at the minimum operating cost of the system, the optimal scheduling model of the cogeneration system, including a heat storage device and electric boiler, is constructed. Second, according to the characteristics of… More >

  • Open Access

    REVIEW

    A Survey of the Researches on Grid-Connected Solar Power Generation Systems and Power Forecasting Methods Based on Ground-Based Cloud Atlas

    Xing Deng1,2, Feipeng Da1,*, Haijian Shao2, Xia Wang3

    Energy Engineering, Vol.120, No.2, pp. 385-408, 2023, DOI:10.32604/ee.2023.023480 - 29 November 2022

    Abstract Photovoltaic power generating is one of the primary methods of utilizing solar energy resources, with large-scale photovoltaic grid-connected power generation being the most efficient way to fully utilize solar energy. In order to provide reference strategies for pertinent researchers as well as potential implementation, this paper tries to provide a survey investigation and technical analysis of machine learning-related approaches, statistical approaches and optimization techniques for solar power generation and forecasting. Deep learning-related methods, in particular, can theoretically handle arbitrary nonlinear transformations through proper model structural design, such as hidden layer topology optimization and objective function More > Graphic Abstract

    A Survey of the Researches on Grid-Connected Solar Power Generation Systems and Power Forecasting Methods Based on Ground-Based Cloud Atlas

Displaying 21-30 on page 3 of 44. Per Page