Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    ARTICLE

    Economic Analysis of Demand Response Incorporated Optimal Power Flow

    Ulagammai Meyyappan*, S. Joyal Isac

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 399-413, 2023, DOI:10.32604/iasc.2023.026627

    Abstract Demand Response (DR) is one of the most cost-effective and unfailing techniques used by utilities for consumer load shifting. This research paper presents different DR programs in deregulated environments. The description and the classification of DR along with their potential benefits and associated cost components are presented. In addition, most DR measurement indices and their evaluation are also highlighted. Initially, the economic load model incorporated thermal, wind, and energy storage by considering the elasticity market price from its calculated locational marginal pricing (LMP). The various DR programs like direct load control, critical peak pricing, real-time pricing, time of use, and… More >

  • Open Access

    ARTICLE

    Short-Term Prediction of Photovoltaic Power Based on Fusion Device Feature-Transfer

    Zhongyao Du1,*, Xiaoying Chen1, Hao Wang2, Xuheng Wang1, Yu Deng1, Liying Sun1

    Energy Engineering, Vol.119, No.4, pp. 1419-1438, 2022, DOI:10.32604/ee.2022.020283

    Abstract To attain the goal of carbon peaking and carbon neutralization, the inevitable choice is the open sharing of power data and connection to the grid of high-permeability renewable energy. However, this approach is hindered by the lack of training data for predicting new grid-connected PV power stations. To overcome this problem, this work uses open and shared power data as input for a short-term PV-power-prediction model based on feature transfer learning to facilitate the generalization of the PV-power-prediction model to multiple PV-power stations. The proposed model integrates a structure model, heat-dissipation conditions, and the loss coefficients of PV modules. Clear-Sky… More >

  • Open Access

    ARTICLE

    Dust Deposition’s Effect on Solar Photovoltaic Module Performance: An Experimental Study in India’s Tropical Region

    K. R. Chairma Lakshmi*, Geetha Ramadas

    Journal of Renewable Materials, Vol.10, No.8, pp. 2133-2153, 2022, DOI:10.32604/jrm.2022.019649

    Abstract A solar PV panel works with maximum efficiency only when it is operated around its optimum operating point or maximum power point. Unfortunately, the performance of the solar cell is affected by several factors like sun direction, solar irradiance, dust accumulation, module temperature, as well as the load on the system. Dust deposition is one of the most prominent factors that influence the performance of solar panels. Because the solar panel is exposed to the atmosphere, dust will accumulate on its surface, reducing the quantity of sunlight reaching the solar cell and diminishing output. In the proposed work, a detailed… More >

  • Open Access

    ARTICLE

    Deep Learning Enabled Predictive Model for P2P Energy Trading in TEM

    Pudi Sekhar1, T. J. Benedict Jose2, Velmurugan Subbiah Parvathy3, E. Laxmi Lydia4, Seifedine Kadry5, Kuntha Pin6, Yunyoung Nam7,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1473-1487, 2022, DOI:10.32604/cmc.2022.022110

    Abstract With the incorporation of distributed energy systems in the electric grid, transactive energy market (TEM) has become popular in balancing the demand as well as supply adaptively over the grid. The classical grid can be updated to the smart grid by the integration of Information and Communication Technology (ICT) over the grids. The TEM allows the Peer-to-Peer (P2P) energy trading in the grid that effectually connects the consumer and prosumer to trade energy among them. At the same time, there is a need to predict the load for effectual P2P energy trading and can be accomplished by the use of… More >

  • Open Access

    ARTICLE

    Expert System for Stable Power Generation Prediction in Microbial Fuel Cell

    Kathiravan Srinivasan1, Lalit Garg2,*, Bor-Yann Chen3, Abdulellah A. Alaboudi4, N. Z. Jhanjhi5, Chang-Tang Chang6, B. Prabadevi1, N. Deepa1

    Intelligent Automation & Soft Computing, Vol.30, No.1, pp. 17-30, 2021, DOI:10.32604/iasc.2021.018380

    Abstract Expert Systems are interactive and reliable computer-based decision-making systems that use both facts and heuristics for solving complex decision-making problems. Generally, the cyclic voltammetry (CV) experiments are executed a random number of times (cycles) to get a stable production of power. However, presently there are not many algorithms or models for predicting the power generation stable criteria in microbial fuel cells. For stability analysis of Medicinal herbs’ CV profiles, an expert system driven by the augmented K-means clustering algorithm is proposed. Our approach requires a dataset that contains voltage-current relationships from CV experiments on the related subjects (plants/herbs). This new… More >

  • Open Access

    ARTICLE

    Application of Model Predictive Control Based on Kalman Filter in Solar Collector Field of Solar Thermal Power Generation

    Xiaojuan Lu, Zeping Liang*

    Energy Engineering, Vol.118, No.4, pp. 1171-1183, 2021, DOI:10.32604/EE.2021.014724

    Abstract There are two prominent features in the process of temperature control in solar collector field. Firstly, the dynamic model of solar collector field is nonlinear and complex, which needs to be simplified. Secondly, there are a lot of random and uncontrollable, measurable and unmeasurable disturbances in solar collector field. This paper uses Taylor formula and difference approximation method to design a dynamic matrix predictive control (DMC) by linearizing and discretizing the dynamic model of the solar collector field. In addition, the purpose of controlling the stability of the outlet solar field salt temperature is achieved by adjusting the mass flow… More >

  • Open Access

    ARTICLE

    Operation Strategy Analysis and Configuration Optimization of Solar CCHP System

    Duojin Fan1, Chengji Shi2, Kai Sun2, Xiaojuan Lu2,*

    Energy Engineering, Vol.118, No.4, pp. 1197-1221, 2021, DOI:10.32604/EE.2021.014532

    Abstract This paper proposed a new type of combined cooling heating and power (CCHP) system, including the parabolic trough solar thermal (PTST) power generation and gas turbine power generation. The thermal energy storage subsystem in the PTST unit provides both thermal energy and electrical energy. Based on the life cycle method, the configuration optimization under eight operation strategies is studied with the economy, energy, and environment indicators. The eight operation strategies include FEL, FEL-EC, FEL-TES, FEL-TES&EC, FTL, FTL-EC, FTL-TES, and FTL-TES&EC. The feasibility of each strategy is verified by taking a residential building cluster as an example. The indicators under the… More >

  • Open Access

    ARTICLE

    Analysis of Electromagnetic Performance of Modulated Coaxial Magnetic Gears Used in Semi-Direct Drive Wind Turbines

    Jungang Wang1,*, Liqun Qian1, Shuairui Xu1, Ruina Mo2

    Energy Engineering, Vol.118, No.2, pp. 251-264, 2021, DOI:10.32604/EE.2021.014143

    Abstract Wind turbine is a key device to realize the utilization of wind energy, and it has been highly valued by all countries. But the mechanical gear transmission of the existing wind power device has the disadvantages of high vibration and noise, high failure rate, and short service time. Magnetic field modulation electromagnetic gear transmission is a new non-contact transmission method. However, the conventional modulation magnetic gear has low torque density and torque defects with large fluctuations. In order to overcome the gear transmission problems of the existing semi-direct drive wind power generation machinery and improve the electromagnetic performance of the… More >

  • Open Access

    ARTICLE

    Accurate Study and Evaluation of Small PV Power Generation System Based on Specific Geographical Location

    Lian Zhang1,2,3,5,*, Zijian Chen2, Heng Zhang3, Zenghong Ma4, Baowen Cao1, Lihong Song5

    Energy Engineering, Vol.117, No.6, pp. 453-470, 2020, DOI:10.32604/EE.2020.013276

    Abstract As an important new energy, solar energy has been extensively used in the world and different types of solar energy systems have been used in different fields. The photovoltaic power generation system has obvious advantage and high stability compared with other energy systems. Furthermore, the small-scale photovoltaic power generation system has a wider application in the field of power generation due to the performance of high efficiency. In this paper, the optimization research and system evaluation of small-scale photovoltaic power system have been studied in different areas by simulation and experimental methods. Based on the determination of photovoltaic model system,… More >

  • Open Access

    ARTICLE

    Study of Solar Thermal Power Generation Based on Reverse Electrodialysis

    Jianjun He*, Ruifeng Wang, Yefeng Yin, Jian Chen, Chaoran Guo

    Energy Engineering, Vol.117, No.4, pp. 185-193, 2020, DOI:10.32604/EE.2020.011181

    Abstract TPG-RED (Thermal Power Generation Based on Reverse Electrodialysis) was studied to explore the new method of solar thermal power generating based on Reverse Electrodialysis (RED) in this paper. RED is a process that transfers the salinity gradient between sea water and fresh water to electricity. TPGRED has combined RED with thermal power generation to transfer thermal energy from solar to electricity which has many advantages of huge available temperature range, sustainability, non-pollution, simple structure, and so on. Respectively, using “1 mol/L H2SO4 solution—0.0001 mol/L H2SO4 solution” and “1 mol/L Na2SO4 solution—0.0001 mol/L Na2SO4 solution” as the working medium at 30°C… More >

Displaying 21-30 on page 3 of 31. Per Page