Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (38)
  • Open Access

    REVIEW

    Multi-Robot Privacy-Preserving Algorithms Based on Federated Learning: A Review

    Jiansheng Peng1,2,*, Jinsong Guo1, Fengbo Bao1, Chengjun Yang2, Yong Xu2, Yong Qin2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2971-2994, 2023, DOI:10.32604/cmc.2023.041897

    Abstract The robotics industry has seen rapid development in recent years due to the Corona Virus Disease 2019. With the development of sensors and smart devices, factories and enterprises have accumulated a large amount of data in their daily production, which creates extremely favorable conditions for robots to perform machine learning. However, in recent years, people’s awareness of data privacy has been increasing, leading to the inability to circulate data between different enterprises, resulting in the emergence of data silos. The emergence of federated learning provides a feasible solution to this problem, and the combination of federated learning and multi-robot systems… More >

  • Open Access

    REVIEW

    Ensuring User Privacy and Model Security via Machine Unlearning: A Review

    Yonghao Tang1, Zhiping Cai1,*, Qiang Liu1, Tongqing Zhou1, Qiang Ni2

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2645-2656, 2023, DOI:10.32604/cmc.2023.032307

    Abstract As an emerging discipline, machine learning has been widely used in artificial intelligence, education, meteorology and other fields. In the training of machine learning models, trainers need to use a large amount of practical data, which inevitably involves user privacy. Besides, by polluting the training data, a malicious adversary can poison the model, thus compromising model security. The data provider hopes that the model trainer can prove to them the confidentiality of the model. Trainer will be required to withdraw data when the trust collapses. In the meantime, trainers hope to forget the injected data to regain security when finding… More >

  • Open Access

    ARTICLE

    A Conditionally Anonymous Linkable Ring Signature for Blockchain Privacy Protection

    Quan Zhou1,*, Yulong Zheng1, Minhui Chen2, Kaijun Wei2

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2851-2867, 2023, DOI:10.32604/csse.2023.039908

    Abstract In recent years, the issue of preserving the privacy of parties involved in blockchain transactions has garnered significant attention. To ensure privacy protection for both sides of the transaction, many researchers are using ring signature technology instead of the original signature technology. However, in practice, identifying the signer of an illegal blockchain transaction once it has been placed on the chain necessitates a signature technique that offers conditional anonymity. Some illegals can conduct illegal transactions and evade the law using ring signatures, which offer perfect anonymity. This paper firstly constructs a conditionally anonymous linkable ring signature using the Diffie-Hellman key… More >

  • Open Access

    ARTICLE

    FedNRM: A Federal Personalized News Recommendation Model Achieving User Privacy Protection

    Shoujian Yu1, Zhenchi Jie1, Guowen Wu1, Hong Zhang1, Shigen Shen2,*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1729-1751, 2023, DOI:10.32604/iasc.2023.039911

    Abstract In recent years, the type and quantity of news are growing rapidly, and it is not easy for users to find the news they are interested in the massive amount of news. A news recommendation system can score and predict the candidate news, and finally recommend the news with high scores to users. However, existing user models usually only consider users’ long-term interests and ignore users’ recent interests, which affects users’ usage experience. Therefore, this paper introduces gated recurrent unit (GRU) sequence network to capture users’ short-term interests and combines users’ short-term interests and long-term interests to characterize users. While… More >

  • Open Access

    ARTICLE

    Blockchain Privacy Protection Based on Post Quantum Threshold Algorithm

    Faguo Wu1,2,3,4,*, Bo Zhou2, Jie Jiang5, Tianyu Lei1, Jiale Song1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 957-973, 2023, DOI:10.32604/cmc.2023.038771

    Abstract With the rapid increase in demand for data trustworthiness and data security, distributed data storage technology represented by blockchain has received unprecedented attention. These technologies have been suggested for various uses because of their remarkable ability to offer decentralization, high autonomy, full process traceability, and tamper resistance. Blockchain enables the exchange of information and value in an untrusted environment. There has been a significant increase in attention to the confidentiality and privacy preservation of blockchain technology. Ensuring data privacy is a critical concern in cryptography, and one of the most important protocols used to achieve this is the secret-sharing method.… More >

  • Open Access

    ARTICLE

    A Double-Compensation-Based Federated Learning Scheme for Data Privacy Protection in a Social IoT Scenario

    Junqi Guo1,2, Qingyun Xiong1,*, Minghui Yang1, Ziyun Zhao1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 827-848, 2023, DOI:10.32604/cmc.2023.036450

    Abstract Nowadays, smart wearable devices are used widely in the Social Internet of Things (IoT), which record human physiological data in real time. To protect the data privacy of smart devices, researchers pay more attention to federated learning. Although the data leakage problem is somewhat solved, a new challenge has emerged. Asynchronous federated learning shortens the convergence time, while it has time delay and data heterogeneity problems. Both of the two problems harm the accuracy. To overcome these issues, we propose an asynchronous federated learning scheme based on double compensation to solve the problem of time delay and data heterogeneity problems.… More >

  • Open Access

    ARTICLE

    Secure Blockchain-Enabled Internet of Vehicles Scheme with Privacy Protection

    Jiansheng Zhang1, Yang Xin1,*, Yuyan Wang2, Xiaohui Lei2, Yixian Yang1

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6185-6199, 2023, DOI:10.32604/cmc.2023.038029

    Abstract The car-hailing platform based on Internet of Vehicles (IoV) technology greatly facilitates passengers’ daily car-hailing, enabling drivers to obtain orders more efficiently and obtain more significant benefits. However, to match the driver closest to the passenger, it is often necessary to process the location information of the passenger and driver, which poses a considerable threat to privacy disclosure to the passenger and driver. Targeting these issues, in this paper, by combining blockchain and Paillier homomorphic encryption algorithm, we design a secure blockchain-enabled IoV scheme with privacy protection for online car-hailing. In this scheme, firstly, we propose an encryption scheme based… More >

  • Open Access

    ARTICLE

    Residential Energy Consumption Forecasting Based on Federated Reinforcement Learning with Data Privacy Protection

    You Lu1,2,#,*, Linqian Cui1,2,#,*, Yunzhe Wang1,2, Jiacheng Sun1,2, Lanhui Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 717-732, 2023, DOI:10.32604/cmes.2023.027032

    Abstract Most studies have conducted experiments on predicting energy consumption by integrating data for model training. However, the process of centralizing data can cause problems of data leakage. Meanwhile, many laws and regulations on data security and privacy have been enacted, making it difficult to centralize data, which can lead to a data silo problem. Thus, to train the model while maintaining user privacy, we adopt a federated learning framework. However, in all classical federated learning frameworks secure aggregation, the Federated Averaging (FedAvg) method is used to directly weight the model parameters on average, which may have an adverse effect on… More >

  • Open Access

    ARTICLE

    Blockchain-Based Data Acquisition with Privacy Protection in UAV Cluster Network

    Lemei Da1, Hai Liang1,*, Yong Ding1,2, Yujue Wang1, Changsong Yang1, Huiyong Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 879-902, 2023, DOI:10.32604/cmes.2023.026309

    Abstract The unmanned aerial vehicle (UAV) self-organizing network is composed of multiple UAVs with autonomous capabilities according to a certain structure and scale, which can quickly and accurately complete complex tasks such as path planning, situational awareness, and information transmission. Due to the openness of the network, the UAV cluster is more vulnerable to passive eavesdropping, active interference, and other attacks, which makes the system face serious security threats. This paper proposes a Blockchain-Based Data Acquisition (BDA) scheme with privacy protection to address the data privacy and identity authentication problems in the UAV-assisted data acquisition scenario. Each UAV cluster has an… More >

  • Open Access

    REVIEW

    A Survey of Privacy Preservation for Deep Learning Applications

    Ling Zhang1,*, Lina Nie1, Leyan Yu2

    Journal of Information Hiding and Privacy Protection, Vol.4, No.2, pp. 69-78, 2022, DOI:10.32604/jihpp.2022.039284

    Abstract Deep learning is widely used in artificial intelligence fields such as computer vision, natural language recognition, and intelligent robots. With the development of deep learning, people’s expectations for this technology are increasing daily. Enterprises and individuals usually need a lot of computing power to support the practical work of deep learning technology. Many cloud service providers provide and deploy cloud computing environments. However, there are severe risks of privacy leakage when transferring data to cloud service providers and using data for model training, which makes users unable to use deep learning technology in cloud computing environments confidently. This paper mainly… More >

Displaying 1-10 on page 1 of 38. Per Page