Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access


    Deep Contextual Learning for Event-Based Potential User Recommendation in Online Social Networks

    T. Manojpraphakar*, A. Soundarrajan

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 699-713, 2022, DOI:10.32604/iasc.2022.025090

    Abstract Event recommendation allows people to identify various recent upcoming social events. Based on the Profile or User recommendation people will identify the group of users to subscribe the event and to participate, despite it faces cold-start issues intrinsically. The existing models exploit multiple contextual factors to mitigate the cold-start issues in essential applications on profile recommendations to the event. However, those existing solution does not incorporate the correlation and covariance measures among various contextual factors. Moreover, recommending similar profiles to various groups of the events also has not been well analyzed in the existing literature. The proposed prototype model Correlation… More >

Displaying 1-10 on page 1 of 1. Per Page