Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ABSTRACT

    Computational Modeling of Human Bicuspid Pulmonary Valve Dynamic Deformation in Patients with Tetralogy of Fallot

    Caili Li1,§, Christopher Baird2, Jing Yao3, Chun Yang4, Liang Wang5, Han Yu5, Tal Geva6, Dalin Tang5,*,7,§

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 59-59, 2019, DOI:10.32604/mcb.2019.06872

    Abstract Pulmonary valve stenosis (PVS) is one common right ventricular outflow tract obstruction problem in patients with tetralogy of Fallot (TOF). Congenital bicuspid pulmonary valve (BPV) is a condition of valvular stenosis, and the occurrence of congenital BPV is often associated with TOF. Dynamic computational models of normal pulmonary root (PR) with tri-leaflet and PR with BPV in patients with TOF were developed to investigate the effect of geometric structure of BPV on valve stress and strain distributions. The pulmonary root geometry included valvular leaflets, sinuses, interleaflet triangles and annulus. Mechanical properties of pulmonary valve leaflet were obtained from biaxial testing… More >

  • Open Access

    ABSTRACT

    Biomechanical Implications of Bicuspid Pulmonary Valve Dynamic Deformation in Patients with Repaired Tetralogy of Fallot

    Caili Li1, Jing Yao2, Chun Yang3, Di Xu2, Liang Wang4, Dalin Tang4,5,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 77-78, 2019, DOI:10.32604/mcb.2019.05745

    Abstract Pulmonary valve stenosis (PVS) is one common post-operative problem in patients with tetralogy of Fallot (TOF) after repair. Congenital bicuspid pulmonary valve (BPV) is a condition of valvular stenosis, and the occurrence of congenital BPV is often associated with TOF. Compared with the biomechanical simulation model of the bicuspid aortic valve, the BPV is often neglected. In this study, we developed a dynamic biomechanical model of a simulated normal pulmonary root (PR) with tri-leaflet and a model of simulated PR with BPV in patients with repaired TOF in order to describe the effect of geometric structure with BPV on the… More >

  • Open Access

    ABSTRACT

    Ventricle Stress/Strain Comparison Between Models Using Different Zero-Load Diastole and Systole Morphologies and Models Using Only One Zero-Load Morphologies

    Han Yu1, Pedro J. del Nido2, Tal Geva3, Chun Yang4, Zheyang Wu4, Rahul H. Rathod3, Xueying Huang5, Kristen L. Billiar6, Dalin Tang1,4,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 73-74, 2019, DOI:10.32604/mcb.2019.05837

    Abstract Ventricle mechanical stress and strain calculations play an important role in cardiovascular investigations. Patients with repaired tetralogy of Fallot (TOF) account for the majority of cases with late onset right ventricular (RV) failure. The current surgical approach, including pulmonary valve replacement(PVR), has yielded mixed results with some patients recover RV function after pulmonary valve insertion with or without concomitant RV remodeling surgery but some do not[Therrien, Siu and McLaughlin (2000);]. Cardiac magnetic resonance (CMR) data were collected from 6 healthy volunteers and 12 Tetralogy of Fallot (TOF) patients before PVR with consent obtained. 12 patients were divided into two groups… More >

  • Open Access

    ARTICLE

    Computational Modeling of Human Bicuspid Pulmonary Valve Dynamic Deformation in Patients with Tetralogy of Fallot

    Caili Li1, §, Christopher Baird2, Jing Yao3, Chun Yang4, Liang Wang5, Han Yu5, Tal Geva6, Dalin Tang5*, 7, §

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.1, pp. 227-244, 2019, DOI:10.32604/cmes.2019.06036

    Abstract Pulmonary valve stenosis (PVS) is one common right ventricular outflow tract obstruction problem in patients with tetralogy of Fallot (TOF). Congenital bicuspid pulmonary valve (BPV) is a condition of valvular stenosis, and the occurrence of congenital BPV is often associated with TOF. Dynamic computational models of normal pulmonary root (PR) with tri-leaflet and PR with BPV in patients with TOF were developed to investigate the effect of geometric structure of BPV on valve stress and strain distributions. The pulmonary root geometry included valvular leaflets, sinuses, interleaflet triangles and annulus. Mechanical properties of pulmonary valve leaflet were obtained from biaxial testing… More >

  • Open Access

    ARTICLE

    Combining Smaller Patch, RV Remodeling and Tissue Regeneration in Pulmonary Valve Replacement Surgery Design May Lead to Better Post-Surgery RV Cardiac Function for Patients with Tetralogy of Fallot

    Zhedian Zhou1, Tal Geva2, Rahul H. Rathod2, Alexander Tang2, Chun Yang3, Kristen L. Billiar4, Dalin Tang1,*,3, Pedro del Nido5

    Molecular & Cellular Biomechanics, Vol.15, No.2, pp. 99-115, 2018, DOI: 10.3970/mcb.2018.00558

    Abstract Patients with repaired Tetralogy of Fallot (ToF), a congenital heart defect which includes a ventricular septal defect and severe right ventricular outflow obstruction, account for the majority of cases with late onset right ventricle (RV) failure. The current surgical approach, which includes pulmonary valve replacement/insertion (PVR), has yielded mixed results. A computational parametric study using 7 patient-specific RV/LV models based on cardiac magnetic resonance (CMR) data as "virtual surgery" was performed to investigate the impact of patch size, RV remodeling and tissue regeneration in PVR surgery design on RV cardiac functions. Two patch sizes, three degrees of scar trimming (RV… More >

  • Open Access

    ARTICLE

    Two-Layer Passive/Active Anisotropic FSI Models with Fiber Orientation: MRI-Based Patient-Specific Modeling of Right Ventricular Response to Pulmonary Valve Insertion Surgery

    Dalin Tang*, Chun Yang, Tal Geva‡,§, Pedro J. del Nido

    Molecular & Cellular Biomechanics, Vol.4, No.3, pp. 159-176, 2007, DOI:10.3970/mcb.2007.004.159

    Abstract A single-layer isotropic patient-specific right/left ventricle and patch (RV/LV/Patch) combination model with fluid-structure interactions (FSI) was introduced in our previous papers to evaluate and optimize human pulmonary valve replacement/insertion (PVR) surgical procedure and patch design. In this paper, an active anisotropic model with two-layer structure for ventricle wall and tissue fiber orientation was introduced to improve previous isotropic model for more accurate assessment of RV function and potential application in PVR surgery and patch design. A material-stiffening approach was used to model active heart contraction. The computational models were used to conduct ``virtual (computational)'' surgeries and test the hypothesis that… More >

Displaying 21-30 on page 3 of 26. Per Page