Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Investigation of Polypyrrole and Polypyrrolepolyethyleneimine as Adsorbents for Methyl Orange Dye Adsorption

    NORHABIBAH MOHAMAD1,*, NOORDINI M. SALLEH1,2, HABIBUN NABI MUHAMMAD EKRAMUL MAHMUD1

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 165-189, 2023, DOI:10.32381/JPM.2023.40.3-4.4

    Abstract The present study has explored the adsorption properties of polypyrrole-based adsorbents (polypyrrole and polypyrrole-polyethyleneimine composite) as novel conducting polymers in adsorbing methyl orange (MO) (an anionic dye) effectively from aqueous solution. The adsorption characteristics of the prepared polymer-based adsorbents were characterized by BET, FTIR, FESEM, and XRD methods. The effectiveness of PPy-based adsorbents for MO dye adsorption was examined using the batch adsorption method. Different parameters were changed during the adsorption process, including contact time, solution pH, and adsorbent dosage. The highest BET surface area of the PPy-PEI composite was found to be 11.85 m2 /g, which is much greater… More >

  • Open Access

    ARTICLE

    Novel Sustainable Cellulose Acetate Based Biosensor for Glucose Detection

    M. F. Elkady1,2,*, E. M. El-Sayed2, Mahmoud Samy3, Omneya A. Koriem1, H. Shokry Hassan4,5

    Journal of Renewable Materials, Vol.12, No.2, pp. 369-380, 2024, DOI:10.32604/jrm.2023.046585

    Abstract In this study, green zinc oxide (ZnO)/polypyrrole (Ppy)/cellulose acetate (CA) film has been synthesized via solvent casting. This film was used as supporting material for glucose oxidase (GOx) to sensitize a glucose biosensor. ZnO nanoparticles have been prepared via the green route using olive leaves extract as a reductant. ZnO/Ppy nanocomposite has been synthesized by a simple in-situ chemical oxidative polymerization of pyrrole (Py) monomer using ferric chloride (FeCl3) as an oxidizing agent. The produced materials and the composite films were characterized using X-ray diffraction analysis (XRD), scanning electron microscope (SEM), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA). Glucose… More > Graphic Abstract

    Novel Sustainable Cellulose Acetate Based Biosensor for Glucose Detection

  • Open Access

    ARTICLE

    Acidic Magnetic Biocarbon-Enabled Upgrading of Biomass-Based Hexanedione into Pyrroles

    Zhimei Li1, Kuan Tian2, Keping Wang2, Zhengyi Li2, Haoli Qin1,*, Hu Li2,*

    Journal of Renewable Materials, Vol.11, No.11, pp. 3847-3865, 2023, DOI:10.32604/jrm.2023.030122

    Abstract Sustainable acquisition of bioactive compounds from biomass-based platform molecules is a green alternative for existing CO2-emitting fossil-fuel technologies. Herein, a core–shell magnetic biocarbon catalyst functionalized with sulfonic acid (Fe3O4@SiO2@chitosan-SO3H, MBC-SO3H) was prepared to be efficient for the synthesis of various N-substituted pyrroles (up to 99% yield) from bio-based hexanedione and amines under mild conditions. The abundance of Brønsted acid sites in the MBC-SO3H ensured smooth condensation of 2,5-hexanedione with a variety of amines to produce N-substituted pyrroles. The reaction was illustrated to follow the conventional PallKnorr coupling pathway, which includes three cascade reaction steps: amination, loop closure and dehydration. The… More > Graphic Abstract

    Acidic Magnetic Biocarbon-Enabled Upgrading of Biomass-Based Hexanedione into Pyrroles

  • Open Access

    ARTICLE

    Mechanical and histological properties of an electrospun scaffold with a modified surface by plasma polymerization implanted in an in vivo model

    MARÍA G. FLORES-SÁNCHEZ1,*, ROBERTO OLAYO2, J. MORALES-CORONA2, ATLÁNTIDA M. RAYA-RIVERA3, DIEGO R. ESQUILIANO-RENDÓN3

    BIOCELL, Vol.46, No.3, pp. 829-836, 2022, DOI:10.32604/biocell.2022.016988

    Abstract This article presents the construction of scaffolds composed of polylactic acid (PLA) with different concentrations of hydroxyapatite (HA) by electrospinning, which were superficially modified with polypyrrole (PPy/I) by plasma polymerization. A preliminary study was conducted of the biological and mechanical behavior of the scaffolds when they were implanted in the back of rabbits for 30 days; bone cells differentiated from mesenchymal stem cells (MSCs) were used. The bone cell and scaffold structures were characterized by histological, immunohistochemical, and mechanical stress tests. Hematoxylin–eosin staining showed good tissue conformation. The immunohistochemical tests highlighted the presence of the main bone tissue proteins, such… More >

  • Open Access

    ARTICLE

    Hepatocyte culture in a radial-flow bioreactor with plasma polypyrrole coated scaffolds

    Odin RAMÍREZ-FERNÁNDEZ1,*, Rafael GODÍNEZ1, Esmeralda ZUÑIGA-AGUILAR1, Luis E. GÓMEZ-QUIROZ2, María C. GUTIÉRREZ-RUIZ2, Juan MORALES3, Roberto OLAYO3

    BIOCELL, Vol.39, No.2-3, pp. 9-14, 2015, DOI:10.32604/biocell.2015.39.009

    Abstract We have designed and evaluated a radial-flow bioreactor for three-dimensional liver carcinoma cell culture on a new porous coated scaffold. We designed a culture chamber where a radial flow of culture medium was continuously delivered through it. Once this system was established, flow was simulated using flow dynamics software based on numeric methods to solve Navier-Stockes flow equations. Perfusion within cell culture scaffolds was simulated using a flow velocity of 7 mL/min and found that cell culture medium was distributed unhindered in the bioreactor chamber. Afterwards, the bioreactor was built according to the simulated design and was tested with liver… More >

  • Open Access

    ARTICLE

    Effect of synthesis variables of plasma synthesized polymers on growth of HepG2 cells

    Elizabeth PÉREZ-TEJADA1,4*, Juan MORALES-CORONA3, Luis Ernesto GÓMEZ-QUIRÓZ2, María Concepción GUTIERREZ-RUIZ2, Roberto OLAYO3

    BIOCELL, Vol.41, No.2-3, pp. 41-44, 2017, DOI:10.32604/biocell.2017.41.041

    Abstract Low pressure plasma polymer films were synthesized using pyrrole and allylamine monomers and adding iodine was used (or not) for the reaction in both cases. They were polymerized on glass substrates under the same reaction conditions. Polymerization of allylamine was also studied at different operating powers. These thin polymer films were used as culture surfaces for HepG2 cells, a cell line derived from a human hepatoma. The proliferation, differentiation and two-dimensional propagation until obtaining monolayer of the cells was studied on the different synthetized films and correlations were established between the conditions of synthesis, the physicochemical characteristics obtained and the… More >

  • Open Access

    ARTICLE

    Electroconductive Composites Containing Nanocellulose, Nanopolypyrrole, and Silver Nanoparticles

    Samir Kamel1,*, Ahmed A. Haroun2, Amany M. El-Nahrawy3, Mohamed A. Diab1

    Journal of Renewable Materials, Vol.7, No.2, pp. 193-203, 2019, DOI:10.32604/jrm.2019.00144

    Abstract In this work, conducting composites of nanocellulose (NC)/polypyrrole nanoparticles (NPPy) and silver nanoparticles (AgNPs), i.e., NC/NPPyAg, were synthesized for the first time, to the best of our knowledge, via in situ emulsion polymerization of pyrrole in the presence of surfactant dopants. The AgNPs acted as an oxidizing agent to simultaneously incorporate nanoparticles into the prepared composites. The structures and morphologies of the prepared composites were studied using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), UV-Vis Spectra, thermogravimetric analysis (TGA), and scanning and transmission electron microscopy (SEM and TEM) techniques. Additionally, the prepared composites were characterized by their conductivities, and… More >

Displaying 1-10 on page 1 of 7. Per Page