Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    A Multi-Stage Pipeline for Date Fruit Processing: Integrating YOLOv11 Detection, Classification, and Automated Counting

    Ali S. Alzaharani, Abid Iqbal*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-27, 2026, DOI:10.32604/cmc.2025.070410 - 10 November 2025

    Abstract In this study, an automated multimodal system for detecting, classifying, and dating fruit was developed using a two-stage YOLOv11 pipeline. In the first stage, the YOLOv11 detection model locates individual date fruits in real time by drawing bounding boxes around them. These bounding boxes are subsequently passed to a YOLOv11 classification model, which analyzes cropped images and assigns class labels. An additional counting module automatically tallies the detected fruits, offering a near-instantaneous estimation of quantity. The experimental results suggest high precision and recall for detection, high classification accuracy (across 15 classes), and near-perfect counting in More >

  • Open Access

    ARTICLE

    BLFM-Net: An Efficient Regional Feature Matching Method for Bronchoscopic Surgery Based on Deep Learning Object Detection

    He Su, Jianwei Gao, Kang Kong*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4193-4213, 2025, DOI:10.32604/cmc.2025.063355 - 19 May 2025

    Abstract Accurate and robust navigation in complex surgical environments is crucial for bronchoscopic surgeries. This study purposes a bronchoscopic lumen feature matching network (BLFM-Net) based on deep learning to address the challenges of image noise, anatomical complexity, and the stringent real-time requirements. The BLFM-Net enhances bronchoscopic image processing by integrating several functional modules. The FFA-Net preprocessing module mitigates image fogging and improves visual clarity for subsequent processing. The feature extraction module derives multi-dimensional features, such as centroids, area, and shape descriptors, from dehazed images. The Faster R-CNN Object detection module detects bronchial regions of interest and… More >

  • Open Access

    ARTICLE

    Unsupervised Low-Light Image Enhancement Based on Explicit Denoising and Knowledge Distillation

    Wenkai Zhang1,2, Hao Zhang1,2, Xianming Liu1, Xiaoyu Guo1,2, Xinzhe Wang1, Shuiwang Li1,2,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2537-2554, 2025, DOI:10.32604/cmc.2024.059000 - 17 February 2025

    Abstract Under low-illumination conditions, the quality of image signals deteriorates significantly, typically characterized by a peak signal-to-noise ratio (PSNR) below 10 dB, which severely limits the usability of the images. Supervised methods, which utilize paired high-low light images as training sets, can enhance the PSNR to around 20 dB, significantly improving image quality. However, such data is challenging to obtain. In recent years, unsupervised low-light image enhancement (LIE) methods based on the Retinex framework have been proposed, but they generally lag behind supervised methods by 5–10 dB in performance. In this paper, we introduce the Denoising-Distilled… More >

  • Open Access

    ARTICLE

    Improved Anomaly Detection in Surveillance Videos with Multiple Probabilistic Models Inference

    Zhen Xu1, Xiaoqian Zeng1, Genlin Ji1,*, Bo Sheng2

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1703-1717, 2022, DOI:10.32604/iasc.2022.016919 - 09 October 2021

    Abstract Anomaly detection in surveillance videos is an extremely challenging task due to the ambiguous definitions for abnormality. In a complex surveillance scenario, the kinds of abnormal events are numerous and might co-exist, including such as appearance and motion anomaly of objects, long-term abnormal activities, etc. Traditional video anomaly detection methods cannot detect all these kinds of abnormal events. Hence, we utilize multiple probabilistic models inference to detect as many different kinds of abnormal events as possible. To depict realistic events in a scene, the parameters of our methods are tailored to the characteristics of video… More >

Displaying 1-10 on page 1 of 4. Per Page