Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    REVIEW

    A REVIEW OF RECENT PROGRESS ON NANO/MICRO SCALE NUCLEATE BOILING FUNDAMENTALS

    J.N. Chunga,†, Tailian Chenb, Shalabh C. Marooc

    Frontiers in Heat and Mass Transfer, Vol.2, No.2, pp. 1-19, 2011, DOI:10.5098/hmt.v2.2.3004

    Abstract Recent research progress in the area of nano/micro scale nucleate boiling is reviewed and an up-to-date summary is provided with a focus on the advances of fundamental boiling physics. This review examines nano/micro scale pool boiling experimental and theoretical/numerical work reported in the open literature. On the experimental side, the topics covered are moving contact line, critical heat flux, boiling curve, nucleation, single bubble boiling cycle, bubble coalescence boiling cycle, heater size effect, nanofluid, and nanoscale-structured heater surface. For the theoretical/numerical work, continuum mechanics modeling of the micro-region and molecular dynamics modeling of the nano-region are included. More >

  • Open Access

    ARTICLE

    RECENT PROGRESS ON EXPERIMENTAL RESEARCH OF CRYOGENIC TRANSPORT LINE CHILLDOWN PROCESS

    J. N. Chung*, Kun Yuan

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-7, 2015, DOI:10.5098/hmt.6.1

    Abstract Chilldown or quenching is a complicated process that initiates the cryogenic fluid line transport, and it involves unsteady two-phase heat and mass transfer. To advance our understanding of this process, we have reviewed recent experimental investigations. The chilldown process can be generally divided into three regimes: film boiling, transition boiling and nucleate boiling, and each regime is associated with a different flow pattern and heat transfer mechanism. Under low flow rate conditions, it is concluded that the two-phase flow regime is dispersed flow in the film boiling regime. The dispersed liquid phase is in the form of long filaments as… More >

  • Open Access

    REVIEW

    Recent progress in microbial cell surface display systems and their application on biosensors

    HAIYING CHEN, YUQING WU, BAOJIAN HUANG, LEI HAN*

    BIOCELL, Vol.47, No.6, pp. 1213-1223, 2023, DOI:10.32604/biocell.2023.028035

    Abstract Microbial cell surface display technology is a recombinant technology to express target proteins on the cell membrane, which can be used to redesign the cell surface with functional proteins and peptides. Bacterial and yeast surface display systems are the most common cell surface display systems of prokaryotic and eukaryotic proteins, that are widely applied as the core elements in the field of biosensors due to their advantages, including enhanced stability, high yield, good safety, expression of larger and more complex proteins. To further promote the performance of biosensors, the biomineralized microbial surface display technology was proposed. This review summarized the… More >

  • Open Access

    REVIEW

    Recent Progress of Surface Passivation Molecules for Perovskite Solar Cell Applications

    Baohua Zhao1, Teng Zhang2,*, Wenwen Liu2, Fansong Meng2, Chengben Liu1, Nuo Chen2, Zhi Li3, Zhaobin Liu3, Xiyou Li2,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1533-1554, 2023, DOI:10.32604/jrm.2022.023192

    Abstract

    Due to the solution processable nature, the prepared perovskite films are polycrystalline with considerable number of defects. These defects, especially defects at interface accelerate the carrier recombination and reduce the carrier collection. Besides, the surface defects also affect the long-term stability of the perovskite solar cells (PVSCs). To solve this problem, surface passivation molecules are introduced at selective interface (the interface between perovskite and carrier selective layer). This review summarizes recent progress of small molecules used in PVSCs. Firstly, different types of defect states in perovskite films are introduced and their effects on device performance are discussed. Subsequently, surface passivation… More > Graphic Abstract

    Recent Progress of Surface Passivation Molecules for Perovskite Solar Cell Applications

  • Open Access

    REVIEW

    Recent Progress of Fabrication, Characterization, and Applications of Anodic Aluminum Oxide (AAO) Membrane: A Review

    Saher Manzoor1, Muhammad Waseem Ashraf1,*, Shahzadi Tayyaba2, Muhammad Imran Tariq3,*, M. Khalid Hossain4

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1007-1052, 2023, DOI:10.32604/cmes.2022.022093

    Abstract The progress of membrane technology with the development of membranes with controlled parameters led to porous membranes. These membranes can be formed using different methods and have numerous applications in science and technology. Anodization of aluminum in this aspect is an electro-synthetic process that changes the surface of the metal through oxidation to deliver an anodic oxide layer. This process results in a self-coordinated, exceptional cluster of round and hollow formed pores with controllable pore widths, periodicity, and thickness. Categorization in barrier type and porous type films, and different methods for the preparation of membranes, have been discussed. After the… More > Graphic Abstract

    Recent Progress of Fabrication, Characterization, and Applications of Anodic Aluminum Oxide (AAO) Membrane: A Review

  • Open Access

    REVIEW

    Recent Progress on Aeroelasticity of High-Performance Morphing UAVs

    Binbin Lv, Jun Zha, Kaichun Zeng*, Hongtao Guo, Li Yu and Peng Zhang

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.1, pp. 1-29, 2022, DOI:10.32604/cmes.2022.020572

    Abstract The high-performance morphing aircraft has become a research focus all over the world. The morphing aircraft, unlike regular unmanned aerial vehicles (UAVs), has more complicated aerodynamic characteristics, making itmore difficultto conduct its design, model analysis, and experimentation. This paper reviews the recent process and the current status of aeroelastic issues, numerical simulations, and wind tunnel test of morphing aircrafts. The evaluation of aerodynamic characteristics, mechanism, and relevant unsteady dynamic aerodynamic modeling throughout the morphing process are the primary technological bottlenecks formorphing aircrafts. The unstable aerodynamic forces have a significant impact on the aircraft handling characteristics, control law design, and flight… More >

  • Open Access

    REVIEW

    Recent Progress in Cellulose-Based Flexible Sensors

    Ningli An1, Jingxuan Qin1, Xing Zhou1, Quandai Wang2, Changqing Fang1,*, Jiapeng Guo2, Bin Nan2

    Journal of Renewable Materials, Vol.10, No.9, pp. 2319-2334, 2022, DOI:10.32604/jrm.2022.021030

    Abstract Flexible sensors are attractive due to potential applications in body exercise and ambient gas monitoring systems. Cellulose and its derivatives have combined superiorities such as intrinsic and structural flexibility, ease of chemical functionalization, moisture sensitivity, and mechanical stability, enabling them to be promising candidates as flexible supporting substrates and flexible sensitive materials. Significant progress consequently has been achieved to improve mechanical, electrical, and chemical performance. The latest advance in materials synthesis, structure design, fabrication control, and working mechanism of novel cellulose-based flexible sensors are reviewed and discussed, including strain sensors, humidity sensors, and harmful gas sensors. Various strategies were summarized… More > Graphic Abstract

    Recent Progress in Cellulose-Based Flexible Sensors

  • Open Access

    REVIEW

    Heavy Metal Remediation in Sludge Compost: Recent Progress

    Rongwei Xiong1,#, Xiufang Gao1,2,#,*, Xinyue Tu3, Yilin Mao1, Li Jiang1, Lu Zheng3, Yitong Du3

    Journal of Renewable Materials, Vol.10, No.2, pp. 469-486, 2022, DOI:10.32604/jrm.2022.017226

    Abstract The safe and efficient disposal and utilization of sludge are major issues to be solved in solid waste treatment and environmental protection due to the complex characteristics of sludge and the low rate of innocuous treatments. Composting is a process of decomposing organic matter and transformed low-molecular organic acids into high-molecular humus substances under the action of microorganisms. Although land-use after composting has become an important direction for sludge treatment, heavy metal pollution is still the bottleneck problem restricting land use of sludge compost. Adding zeolite, hydroxyapatite, and other conditioning agents to the composting process affects the concentration or form… More >

  • Open Access

    ABSTRACT

    Recent Progress in Medical Biomaterials

    Qiqing Zhang1,2,3,*, Yuan Zhang4, Linzhao Wang4, Yongzhen Xing4

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 134-135, 2019, DOI:10.32604/mcb.2019.07301

    Abstract Guided tissue regeneration (GTR) is a technique that selectively guides cells to attach and proliferate towards an injured site to achieve tissue regeneration through a physical barrier membrane. In this review, we presented a brief overview of the development of GTR technology and GTR materials. Nowadays, new technologies such as electrospinning, nanotechnology, controlled release technique, and 3D printing have been introduced into the study of GTR materials. Resorbable membrane as GTR materials are available as alternatives to conventional non-resorbable membranes. Current GTR materials not only act as a physical barrier membrane but also as a scaffold to play a role… More >

  • Open Access

    ARTICLE

    Virtual Delamination Testing through Non-Linear Multi-Scale Computational Methods: Some Recent Progress

    O. Allix1, P. Gosselet1, P. Kerfriden2, K. Saavedra3

    CMC-Computers, Materials & Continua, Vol.32, No.2, pp. 107-132, 2012, DOI:10.3970/cmc.2012.032.107

    Abstract This paper deals with the parallel simulation of delamination problems at the meso-scale by means of multi-scale methods, the aim being the Virtual Delamination Testing of Composite parts. In the non-linear context, Domain Decomposition Methods are mainly used as a solver for the tangent problem to be solved at each iteration of a Newton-Raphson algorithm. In case of strongly non linear and heterogeneous problems, this procedure may lead to severe difficulties. The paper focuses on methods to circumvent these problems, which can now be expressed using a relatively general framework, even though the different ingredients of the strategy have emerged… More >

Displaying 1-10 on page 1 of 10. Per Page