Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (186)
  • Open Access

    ARTICLE

    Wall-Pressure Fluctuations of Modified Turbulent Boundary Layer with Riblets

    Hayder A. Abdulbari 1,2, Hassan D. Mahammed1, Z. Hassan, Wafaa K. Mahmood3

    FDMP-Fluid Dynamics & Materials Processing, Vol.12, No.2, pp. 86-101, 2016, DOI:10.3970/fdmp.2016.012.086

    Abstract An experimental investigation was carried out to study the response of a turbulent pressure drop fluctuations to longitudinal groove riblets, involved two configurations being triangular and spaced triangular grooves with height 600, 800, 1000 μm and peak to peak spacing 1000 μm and 2000 μm respectively. Experiments were therefore performed at free stream velocity up to 0.44 m/sec, which were corresponding to Reynolds number (Re) 53000. The development of the obtained turbulent layer downstream of the grooves was then compared with the results from the corresponding smooth-wall case. To conclude, the effect of the spaced More >

  • Open Access

    ARTICLE

    Robust Reduction Method for Biomolecules Modeling

    Kilho Eom1, Jeong-Hee Ahn2, Seung-Chul Baek2, Jae-In Kim2, Sungsoo Na2,3

    CMC-Computers, Materials & Continua, Vol.6, No.1, pp. 35-42, 2007, DOI:10.3970/cmc.2007.006.035

    Abstract This paper concerns the application and demonstration of robust reduction methodology for biomolecular structure modeling, which is able to estimate dynamics of large proteins. The understanding of large protein dynamics is germane to gain insight into biological functions related to conformation change that is well described by normal modes. In general, proteins exhibit the complicated potential field and the large degrees of freedom, resulting in the computational prohibition for large protein dynamics. In this article, large protein dynamics is investigated with modeling reduction schemes. The performance of hierarchical condensation methods implemented in the paper is More >

  • Open Access

    ARTICLE

    Optimization Algorithm for Reduction the Size of Dixon Resultant Matrix: A Case Study on Mechanical Application

    Shang Zhang1, *, Seyedmehdi Karimi2, Shahaboddin Shamshirband3, 4, *, Amir Mosavi5,6

    CMC-Computers, Materials & Continua, Vol.58, No.2, pp. 567-583, 2019, DOI:10.32604/cmc.2019.02795

    Abstract In the process of eliminating variables in a symbolic polynomial system, the extraneous factors are referred to the unwanted parameters of resulting polynomial. This paper aims at reducing the number of these factors via optimizing the size of Dixon matrix. An optimal configuration of Dixon matrix would lead to the enhancement of the process of computing the resultant which uses for solving polynomial systems. To do so, an optimization algorithm along with a number of new polynomials is introduced to replace the polynomials and implement a complexity analysis. Moreover, the monomial multipliers are optimally positioned More >

  • Open Access

    ARTICLE

    Method of Time Series Similarity Measurement Based on Dynamic Time Warping

    Lianggui Liu1,*, Wei Li1, Huiling Jia1

    CMC-Computers, Materials & Continua, Vol.57, No.1, pp. 97-106, 2018, DOI:10.32604/cmc.2018.03511

    Abstract With the rapid development of mobile communication all over the world, the similarity of mobile phone communication data has received widely attention due to its advantage for the construction of smart cities. Mobile phone communication data can be regarded as a type of time series and dynamic time warping (DTW) and derivative dynamic time warping (DDTW) are usually used to analyze the similarity of these data. However, many traditional methods only calculate the distance between time series while neglecting the shape characteristics of time series. In this paper, a novel hybrid method based on the More >

  • Open Access

    ARTICLE

    Cycle Time Reduction in Injection Molding by Using Milled Groove Conformal Cooling

    Mahesh S. Shinde1,*, Kishor M. Ashtankar2

    CMC-Computers, Materials & Continua, Vol.53, No.3, pp. 207-217, 2017, DOI:10.32604/cmc.2017.053.223

    Abstract This paper presents simulation study on Milled Grooved conformal cooling channels (MGCCC) in injection molding. MGCCC has a more effective cooling surface area which helps to provide efficient cooling as compared to conventional cooling. A case study of Encloser part is investigated for cycle time reduction and quality improvement. The performance designs of straight drilled are compared with MGCCC by using Autodesk Moldflow Insight (AMI) 2016. The results show total 32.1% reduction of cooling time and 9.86% reduction of warpage in case of MGCCC as compared to conventional cooling. More >

  • Open Access

    ARTICLE

    Higher-Order Line Element Analysis of Potential Field with Slender Heterogeneities

    H.-S. Wang1,2, H. Jiang3,4, B. Yang2

    CMC-Computers, Materials & Continua, Vol.51, No.3, pp. 145-161, 2016, DOI:10.3970/cmc.2016.051.145

    Abstract Potential field due to line sources residing on slender heterogeneities is involved in various areas, such as heat conduction, potential flow, and electrostatics. Often dipolar line sources are either prescribed or induced due to close interaction with other objects. Its calculation requires a higher-order scheme to take into account the dipolar effect as well as net source effect. In the present work, we apply such a higher-order line element method to analyze the potential field with cylindrical slender heterogeneities. In a benchmark example of two parallel rods, we compare the line element solution with the More >

Displaying 181-190 on page 19 of 186. Per Page