Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (191)
  • Open Access

    ARTICLE

    The Coupling Method with the NaturalBoundary Reduction on an Ellipse for Exterior Anisotropic Problems

    Quan Zheng2, Jing Wang2, Jing-ya Li2

    CMES-Computer Modeling in Engineering & Sciences, Vol.72, No.2, pp. 103-114, 2011, DOI:10.3970/cmes.2011.072.103

    Abstract This paper investigates the coupling method of the finite element and the natural boundary element using an elliptic artificial boundary for solving exterior anisotropic problems, and obtains a new error estimate that depends on the mesh size, the location of the elliptic artificial boundary, the number of terms after truncating from the infinite series in the integral. Numerical examples are presented to demonstrate the effectiveness and the properties of this method. More >

  • Open Access

    ARTICLE

    Efficient Cohomology Computation for Electromagnetic Modeling

    Paweł Dłotko1, Ruben Specogna2

    CMES-Computer Modeling in Engineering & Sciences, Vol.60, No.3, pp. 247-278, 2010, DOI:10.3970/cmes.2010.060.247

    Abstract The systematic potential design is of high importance in computational electromagnetics. For example, it is well known that when the efficient eddy-current formulations based on a magnetic scalar potential are employed in problems which involve conductive regions with holes, the so-calledthick cutsare needed to make the boundary value problem well defined. Therefore, a considerable effort has been invested over the past twenty-five years to develop fast and general algorithms to compute thick cuts automatically. Nevertheless, none of the approaches proposed in literature meet all the requirements of being automatic, computationally efficient and general. In this More >

  • Open Access

    ARTICLE

    Error Reduction in Gauss-Jacobi-Nyström Quadraturefor Fredholm Integral Equations of the Second Kind

    M. A. Kelmanson1 and M. C. Tenwick1

    CMES-Computer Modeling in Engineering & Sciences, Vol.55, No.2, pp. 191-210, 2010, DOI:10.3970/cmes.2010.055.191

    Abstract A method is presented for improving the accuracy of the widely used Gauss-Legendre Nyström method for determining approximate solutions of Fredholm integral equations of the second kind on finite intervals. The authors' recent continuous-kernel approach is generalised in order to accommodate kernels that are either singular or of limited continuous differentiability at a finite number of points within the interval of integration. This is achieved by developing a Gauss-Jacobi Nyström method that moreover includes a mean-value estimate of the truncation error of the Hermite interpolation on which the quadrature rule is based, making it particularly More >

  • Open Access

    ARTICLE

    Compact Modelling of Electric Arc Furnace Electrodes for Vibration Analysis, Detection and Suppression

    E. Brusa1, E. Franceschinis2, S. Morsut2

    CMES-Computer Modeling in Engineering & Sciences, Vol.42, No.2, pp. 75-106, 2009, DOI:10.3970/cmes.2009.042.075

    Abstract Electrodes motion and positioning are critical issues of the Electric Arc Furnace (EAF) operation in steelmaking process. During the melting process electrode is exposed to some impulsive and harmonic forces, superimposing to the structure's static loading. Unfortunately, structural vibration may interact with the electric arc regulation, because of the dynamic resonance. Instability in the furnace power supplying and dangerous electrode breakage may occur as a consequence of those dynamic effects. In this paper the dynamic behaviour of a real EAF structure is discussed and some numerical models are proposed. Available experimental data, collected by a… More >

  • Open Access

    ARTICLE

    A dimensional reduction of the Stokes problem

    Olivier Ricou1, Michel Bercovier2

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.1, pp. 87-102, 2002, DOI:10.3970/cmes.2002.003.087

    Abstract In this article, we present a method of reduction of the dimension of the Stokes equations by one in a quasi-cylindrical domain. It takes the special shape of the domain into account by the use of a projection onto a space of polynomials defined over the thickness. The polynomials are defined to fit as well as possible with the variables they approximate. Hence, this method restricted to the first polynomial, recovers the Hele-Shaw approximation.
    The convergence of the approximate solution to the continuous one is shown. Under a regularity hypothesis, we also obtain error estimates. More >

  • Open Access

    ARTICLE

    Wall-Pressure Fluctuations of Modified Turbulent Boundary Layer with Riblets

    Hayder A. Abdulbari 1,2, Hassan D. Mahammed1, Z. Hassan, Wafaa K. Mahmood3

    FDMP-Fluid Dynamics & Materials Processing, Vol.12, No.2, pp. 86-101, 2016, DOI:10.3970/fdmp.2016.012.086

    Abstract An experimental investigation was carried out to study the response of a turbulent pressure drop fluctuations to longitudinal groove riblets, involved two configurations being triangular and spaced triangular grooves with height 600, 800, 1000 μm and peak to peak spacing 1000 μm and 2000 μm respectively. Experiments were therefore performed at free stream velocity up to 0.44 m/sec, which were corresponding to Reynolds number (Re) 53000. The development of the obtained turbulent layer downstream of the grooves was then compared with the results from the corresponding smooth-wall case. To conclude, the effect of the spaced More >

  • Open Access

    ARTICLE

    Robust Reduction Method for Biomolecules Modeling

    Kilho Eom1, Jeong-Hee Ahn2, Seung-Chul Baek2, Jae-In Kim2, Sungsoo Na2,3

    CMC-Computers, Materials & Continua, Vol.6, No.1, pp. 35-42, 2007, DOI:10.3970/cmc.2007.006.035

    Abstract This paper concerns the application and demonstration of robust reduction methodology for biomolecular structure modeling, which is able to estimate dynamics of large proteins. The understanding of large protein dynamics is germane to gain insight into biological functions related to conformation change that is well described by normal modes. In general, proteins exhibit the complicated potential field and the large degrees of freedom, resulting in the computational prohibition for large protein dynamics. In this article, large protein dynamics is investigated with modeling reduction schemes. The performance of hierarchical condensation methods implemented in the paper is More >

  • Open Access

    ARTICLE

    Optimization Algorithm for Reduction the Size of Dixon Resultant Matrix: A Case Study on Mechanical Application

    Shang Zhang1, *, Seyedmehdi Karimi2, Shahaboddin Shamshirband3, 4, *, Amir Mosavi5,6

    CMC-Computers, Materials & Continua, Vol.58, No.2, pp. 567-583, 2019, DOI:10.32604/cmc.2019.02795

    Abstract In the process of eliminating variables in a symbolic polynomial system, the extraneous factors are referred to the unwanted parameters of resulting polynomial. This paper aims at reducing the number of these factors via optimizing the size of Dixon matrix. An optimal configuration of Dixon matrix would lead to the enhancement of the process of computing the resultant which uses for solving polynomial systems. To do so, an optimization algorithm along with a number of new polynomials is introduced to replace the polynomials and implement a complexity analysis. Moreover, the monomial multipliers are optimally positioned More >

  • Open Access

    ARTICLE

    Method of Time Series Similarity Measurement Based on Dynamic Time Warping

    Lianggui Liu1,*, Wei Li1, Huiling Jia1

    CMC-Computers, Materials & Continua, Vol.57, No.1, pp. 97-106, 2018, DOI:10.32604/cmc.2018.03511

    Abstract With the rapid development of mobile communication all over the world, the similarity of mobile phone communication data has received widely attention due to its advantage for the construction of smart cities. Mobile phone communication data can be regarded as a type of time series and dynamic time warping (DTW) and derivative dynamic time warping (DDTW) are usually used to analyze the similarity of these data. However, many traditional methods only calculate the distance between time series while neglecting the shape characteristics of time series. In this paper, a novel hybrid method based on the More >

  • Open Access

    ARTICLE

    Cycle Time Reduction in Injection Molding by Using Milled Groove Conformal Cooling

    Mahesh S. Shinde1,*, Kishor M. Ashtankar2

    CMC-Computers, Materials & Continua, Vol.53, No.3, pp. 207-217, 2017, DOI:10.32604/cmc.2017.053.223

    Abstract This paper presents simulation study on Milled Grooved conformal cooling channels (MGCCC) in injection molding. MGCCC has a more effective cooling surface area which helps to provide efficient cooling as compared to conventional cooling. A case study of Encloser part is investigated for cycle time reduction and quality improvement. The performance designs of straight drilled are compared with MGCCC by using Autodesk Moldflow Insight (AMI) 2016. The results show total 32.1% reduction of cooling time and 9.86% reduction of warpage in case of MGCCC as compared to conventional cooling. More >

Displaying 181-190 on page 19 of 191. Per Page